Photon upconversion based on sensitized triplet-triplet annihilation

[1]  R. Dabestani,et al.  Role of triplet-triplet annihilation in anthracene dimerization , 1983 .

[2]  Shaomin Ji,et al.  Ruthenium(II) polyimine-coumarin dyad with non-emissive 3IL excited state as sensitizer for triplet-triplet annihilation based upconversion. , 2011, Angewandte Chemie.

[3]  Shaomin Ji,et al.  Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion. , 2011, The Journal of organic chemistry.

[4]  J. Williams,et al.  Energy Upconversion via Triplet Fusion in Super Yellow PPV Films Doped with Palladium Tetraphenyltetrabenzoporphyrin: a Comprehensive Investigation of Exciton Dynamics , 2013 .

[5]  S. Baluschev,et al.  Annihilation assisted upconversion: all-organic, flexible and transparent multicolour display , 2008 .

[6]  K. Landfester,et al.  Synergetic effect in triplet-triplet annihilation upconversion: highly efficient multi-chromophore emitter. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  W. Fann,et al.  White-light emission from an upconverted emission with an organic triplet sensitizer. , 2009, Chemical communications.

[8]  P. E. Keivanidis,et al.  Up‐Conversion Photoluminescence in Polyfluorene Doped with Metal(II)–Octaethyl Porphyrins , 2003 .

[9]  K. Krämer,et al.  Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion , 2005 .

[10]  K. Schanze,et al.  Extended Conjugation Platinum(II) Porphyrins for use in Near-Infrared Emitting Organic Light Emitting Diodes , 2011 .

[11]  F. Castellano,et al.  Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(I) MLCT sensitizer. , 2013, Chemical communications.

[12]  J. Saltiel,et al.  Spin-statistical factor in the triplet-triplet annihilation of anthracene triplets , 1981 .

[13]  Murad J Y Tayebjee,et al.  On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. , 2010, Physical chemistry chemical physics : PCCP.

[14]  R. Wilson,et al.  The Vocabulary and Concepts of Organic Chemistry: Orchin/The Vocabulary and Concepts Of Organic Chemistry , 2005 .

[15]  F. Castellano,et al.  Photochemical upconversion: anthracene dimerization sensitized to visible light by a RuII chromophore. , 2006, Angewandte Chemie.

[16]  Maxwell J. Crossley,et al.  Kinetic Analysis of Photochemical Upconversion by Triplet−Triplet Annihilation: Beyond Any Spin Statistical Limit , 2010 .

[17]  F. Castellano,et al.  Triplet Sensitized Red-to-Blue Photon Upconversion , 2010 .

[18]  K. Landfester,et al.  Annihilation upconversion in cells by embedding the dye system in polymeric nanocapsules. , 2011, Macromolecular bioscience.

[19]  Felix N. Castellano,et al.  Photon upconversion based on sensitized triplet-triplet annihilation , 2010 .

[20]  K. Schanze,et al.  Photophysical Properties of Near-Infrared Phosphorescent π-Extended Platinum Porphyrins , 2011 .

[21]  Dmitri B. Papkovsky,et al.  New oxygen sensors and their application to biosensing , 1995 .

[22]  Ashwin C. Atre,et al.  Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies , 2011 .

[23]  Angelo Monguzzi,et al.  Multicomponent polymeric film for red to green low power sensitized up-conversion. , 2009, The journal of physical chemistry. A.

[24]  K. Schanze,et al.  Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer. , 2013, Chemical communications.

[25]  Jae-Hong Kim,et al.  High Efficiency Low-Power Upconverting Soft Materials , 2012 .

[26]  C. Weder,et al.  Influence of temperature on low-power upconversion in rubbery polymer blends. , 2009, Journal of the American Chemical Society.

[27]  Felix N. Castellano,et al.  Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear , 2012 .

[28]  F. Castellano,et al.  Low power upconversion using MLCT sensitizers. , 2005, Chemical communications.

[29]  J. Mccleverty Photochemistry of polypyridine and porphyrin complexes , 1993 .

[30]  Chuang Zhang,et al.  Organic core-shell nanostructures: microemulsion synthesis and upconverted emission. , 2010, Chemical communications.

[31]  F. Castellano,et al.  Supra-nanosecond dynamics of a red-to-blue photon upconversion system. , 2009, Inorganic chemistry.

[32]  F. Castellano,et al.  Photochemical upconversion approach to broad-band visible light generation. , 2008, The journal of physical chemistry. A.

[33]  J. Birks The quintet state of the pyrene excimer , 1967 .

[34]  Kazuo Tanaka,et al.  Environment-responsive upconversion based on dendrimer-supported efficient triplet-triplet annihilation in aqueous media. , 2010, Chemical communications.

[35]  G. Wegner,et al.  Up-conversion fluorescence: noncoherent excitation by sunlight. , 2006, Physical review letters.

[36]  Angelo Monguzzi,et al.  Low‐Power‐Photon Up‐Conversion in Dual‐Dye‐Loaded Polymer Nanoparticles , 2012 .

[37]  Shaomin Ji,et al.  Ruthenium(II) polyimine complexes with a long-lived 3IL excited state or a 3MLCT/3 IL equilibrium: efficient triplet sensitizers for low-power upconversion. , 2011, Angewandte Chemie.

[38]  Francesco Scotognella,et al.  Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold , 2008 .

[39]  Wei Feng,et al.  Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. , 2012, Journal of the American Chemical Society.

[40]  F. Castellano,et al.  Room temperature phosphorescence from ruthenium(II) complexes bearing conjugated pyrenylethynylene subunits. , 2004, Inorganic chemistry.

[41]  Marcello Campione,et al.  Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. , 2012, Physical chemistry chemical physics : PCCP.

[42]  Giorgio Macchi,et al.  Light‐Scribing Emissive Patterns on Polymer Films Through a Light‐Induced Depletion of Phosphorescence Quenching , 2010, Advanced materials.

[43]  P. V. Ekeren,et al.  Polyurethanes for potential use in transparent armour investigated using DSC and DMA , 2011 .

[44]  J. M. Gardner,et al.  Photon Upconversion on Dye-Sensitized Nanostructured ZrO2 Films , 2011 .

[45]  Josie E. Auckett,et al.  Efficient up-conversion by triplet-triplet annihilation , 2009 .

[46]  F. Castellano,et al.  Annihilation limit of a visible-to-UV photon upconversion composition ascertained from transient absorption kinetics. , 2013, The journal of physical chemistry. A.

[47]  F. Castellano,et al.  Supermolecular-chromophore-sensitized near-infrared-to-visible photon upconversion. , 2010, Journal of the American Chemical Society.

[48]  Akio Yasuda,et al.  Blue-green up-conversion: noncoherent excitation by NIR light. , 2007, Angewandte Chemie.

[49]  E. Reichmanis,et al.  Low-threshold photon upconversion capsules obtained by photoinduced interfacial polymerization. , 2012, Angewandte Chemie.

[50]  K. Landfester,et al.  All Organic Nanofibers As Ultralight Versatile Support for Triplet-Triplet Annihilation Upconversion. , 2013, ACS macro letters.

[51]  Christoph Weder,et al.  Noncoherent low-power upconversion in solid polymer films. , 2007, Journal of the American Chemical Society.

[52]  F. Castellano,et al.  Pd(II) phthalocyanine-sensitized triplet-triplet annihilation from rubrene. , 2008, The journal of physical chemistry. A.

[53]  C. A. Parker Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry , 1968 .

[54]  Matthew F. Paige,et al.  Mechanisms of low-power noncoherent photon upconversion in metalloporphyrin-organic blue emitter systems in solution. , 2009, The journal of physical chemistry. A.

[55]  Heinz Langhals,et al.  Control of the Interactions in Multichromophores: Novel Concepts. Perylene Bis-imides as Components for Larger Functional Units , 2005 .

[56]  Zhixiang Wei,et al.  Modulating helicity through amphiphilicity-tuning supramolecular interactions for the controlled assembly of perylenes. , 2011, Chemical communications.

[57]  K. Landfester,et al.  Micellar carrier for triplet–triplet annihilation-assisted photon energy upconversion in a water environment , 2011 .

[58]  Qifan Yan,et al.  Conjugated dimeric and trimeric perylenediimide oligomers. , 2009, Organic letters.

[59]  F. Castellano,et al.  Nonlinear photochemistry squared: quartic light power dependence realized in photon upconversion. , 2009, The journal of physical chemistry. A.

[60]  J. Demas,et al.  Measurement of photoluminescence quantum yields. Review , 1971 .

[61]  Jae-Hong Kim,et al.  Encapsulated triplet-triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. , 2012, Journal of the American Chemical Society.

[62]  Raymond Ziessel,et al.  Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. , 2008, Journal of the American Chemical Society.

[63]  Qian Liu,et al.  A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. , 2013, Journal of the American Chemical Society.

[64]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[65]  R. Weisman,et al.  Determination of Triplet Quantum Yields from Triplet−Triplet Annihilation Fluorescence , 2000 .

[66]  F. Castellano,et al.  Anti-Stokes delayed fluorescence from metal-organic bichromophores. , 2004, Chemical communications.

[67]  F. Castellano,et al.  Low power visible-to-UV upconversion. , 2009, The journal of physical chemistry. A.