Comparison of polychromatic wave-optics models

Polychromatic laser light can reduce speckle contrast in wavefront-sensing and imaging applications that use direct detection schemes. To help quantify the associated reduction in speckle contrast, this study investigates the accuracy and numerical efficiency of three separate wave-optics models that simulate the active illumination of extended objects with polychromatic laser light. The three separate models use spectral slicing, Monte Carlo averaging, and depth slicing, respectively, to simulate the laser-target interaction. The sampling requirements of all three models are discussed. Comparisons to analytical solutions and experimental data are made when possible. In general, the experiments and theory compare favorably with the models.

[1]  Average Contrast of White-light Image Speckle Patterns , 1979 .

[2]  Y Q Hu Dependence of polychromatic-speckle-pattern contrast on imaging and illumination directions. , 1994, Applied optics.

[3]  Iyad Dajani,et al.  Comparison of phase modulation schemes for coherently combined fiber amplifiers. , 2015, Optics express.

[4]  Olga Korotkova,et al.  Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams , 2010 .

[5]  Paul F. McManamon,et al.  Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology , 2012 .

[6]  Robert A. Sprague,et al.  Surface roughness measurement using white light speckle. , 1972, Applied optics.

[7]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[8]  H. M. Pedersen Second-order Statistics of Light Diffracted from Gaussian, Rough Surfaces with Applications to the Roughness Dependence of Speckles , 1975 .

[9]  David Charles Dayton,et al.  Comparison of fast correlation algorithms for target tracking , 2012, Other Conferences.

[10]  Brynmor J Davis,et al.  Simulation of vector fields with arbitrary second-order correlations. , 2007, Optics express.

[11]  David G. Voelz,et al.  Synthesizing time-evolving partially-coherent Schell-model sources , 2017 .

[12]  H. M. Pedersen On the Contrast of Polychromatic Speckle Patterns and Its Dependence on Surface Roughness , 1975 .

[13]  N Alic,et al.  Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers. , 2010, Optics express.

[14]  Olga Korotkova,et al.  Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere. , 2008, Optics express.

[15]  A. Friesem,et al.  Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers , 1989 .

[16]  Lioudmila Tchvialeva,et al.  Error analysis for polychromatic speckle contrast measurements , 2011 .

[17]  Steven T. Fiorino,et al.  Comparison of coherent and incoherent laser beam combination for tactical engagements , 2012 .

[18]  Hagop Injeyan,et al.  Active Tracker Laser (ATLAS) , 1997 .

[19]  Gregory J Gbur Simulating fields of arbitrary spatial and temporal coherence. , 2006, Optics express.

[20]  Lioudmila Tchvialeva,et al.  Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast , 2008 .

[21]  D G Voelz,et al.  Illumination coherence effects in laser-speckle imaging: modeling and experimental demonstration. , 1997, Applied optics.

[22]  Steven T. Fiorino,et al.  Enhanced, fast-running scaling law model of thermal blooming and turbulence effects on high energy laser propagation. , 2013, Optics express.

[23]  C. Delisle,et al.  Détermination de la surface de cohérence à partir d'une expérience de photocomptage , 1972 .

[24]  João L. Pinto,et al.  Contrast of polychromatic speckle patterns and its dependence to surface heights distribution , 2003 .

[25]  Jason D. Schmidt,et al.  Numerical Simulation of Optical Wave Propagation With Examples in MATLAB , 2010 .

[26]  Robert K. Tyson Introduction to Adaptive Optics , 2000 .

[27]  Steven T. Fiorino,et al.  Modeled and measured image-plane polychromatic speckle contrast , 2016 .

[28]  J. Goodman Introduction to Fourier optics , 1969 .

[29]  Joseph W Goodman,et al.  Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber. , 2012, Optics express.

[30]  Clint Zeringue,et al.  A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. , 2012, Optics express.

[31]  Ying Lin,et al.  Numerical modeling of the excimer beam , 1999, Advanced Lithography.

[32]  Lioudmila Tchvialeva,et al.  Influence of geometry on polychromatic speckle contrast. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  J. Bengtsson,et al.  Efficient numerical representation of the optical field for the propagation of partially coherent radiation with a specified spatial and temporal coherence function. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Ikuo Mito,et al.  Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems , 1988 .

[35]  Johan Nilsson,et al.  Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering. , 2015, Optics express.

[36]  Jim F. Riker Requirements on active (laser) tracking and imaging from a technology perspective , 2011, Defense + Commercial Sensing.

[37]  T. Mckechnie,et al.  Image-plane speckle in partially coherent illumination , 1976 .

[38]  A. Peleg,et al.  Optimized multiemitter beams for free-space optical communications through turbulent atmosphere. , 2007, Optics letters.

[39]  T. Asakura,et al.  Speckle reduction in coherent information processing , 1996, Proc. IEEE.

[40]  J M Huntley Simple model for image-plane polychromatic speckle contrast. , 1999, Applied optics.