Synthesis of highly stable sub-8 nm TiO2 nanoparticles and their multilayer electrodes of TiO2/MWNT for electrochemical applications.

Next-generation electrochemical energy storage for integrated microsystems and consumer electronic devices requires novel electrode materials with engineered architectures to meet the requirements of high performance, low cost, and robustness. However, conventional electrode fabrication processes such as doctor blading afford limited control over the electrode thickness and structure at the nanoscale and require the incorporation of insulating binder and other additives, which can promote agglomeration and reduce active surface area, limiting the inherent advantages attainable from nanoscale materials. We have engineered a route for the synthesis of highly stable, sub-8 nm TiO2 nanoparticles and their subsequent incorporation with acid-functionalized multiwalled carbon nanotubes (MWNTs) into nanostructured electrodes using aqueous-based layer-by-layer electrostatic self-assembly. Using this approach, binder-free thin film electrodes with highly controllable thicknesses up to the micrometer scale were developed with well-dispersed, nonagglomerated TiO2 nanoparticles on MWNTs. Upon testing in an Li electrochemical half-cell, these electrodes demonstrate high capacity (>150 mAh/gel(ectrode) at 0.1 A/gel(ectrode)), good rate capability (>100 mAh/gel(ectrode) up to 1 A/g(electrode)) and nearly no capacity loss up to 200 cycles for electrodes with thicknesses up to 1480 nm, indicating their promise as thin-film negative electrodes for future Li storage applications.

[1]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[2]  Yunlong Zhao,et al.  Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. , 2013, Nano letters.

[3]  P. Bruce,et al.  Lithium insertion into anatase nanotubes , 2012 .

[4]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[5]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[6]  A. S. Nair,et al.  Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries , 2012 .

[7]  Yuki Yamada,et al.  Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries , 2012 .

[8]  X. Su,et al.  Advanced titania nanostructures and composites for lithium ion battery , 2012, Journal of Materials Science.

[9]  G. Cao,et al.  Design and Tailoring of a Three-Dimensional TiO2–Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage , 2011 .

[10]  Y. Shao-horn,et al.  Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. , 2011, ACS nano.

[11]  L. Nazar,et al.  Electrochemical energy storage to power the 21st century , 2011 .

[12]  S. Das,et al.  Influence of Mesoporosity and Carbon Electronic Wiring on Electrochemical Performance of Anatase Titania , 2011 .

[13]  Y. Shao-horn,et al.  Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors , 2011 .

[14]  Dong‐Wan Kim,et al.  Highly reversible lithium storage in Bacillus subtilis -directed porous Co₃O₄ nanostructures. , 2011, ACS nano.

[15]  L. Qu,et al.  Super-long aligned TiO2/carbon nanotube arrays , 2010, Nanotechnology.

[16]  Jun Liu,et al.  Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles , 2010 .

[17]  C. Wong,et al.  Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. , 2010, ACS nano.

[18]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[19]  H. Xia,et al.  Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. , 2010, ACS nano.

[20]  Li-Jun Wan,et al.  Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem , 2010 .

[21]  G. Han,et al.  Effects of Water Amount and pH on the Crystal Behavior of a TiO2 Nanocrystalline Derived from a Sol–Gel Process at a Low Temperature , 2009 .

[22]  S. Kim,et al.  Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. , 2009, ACS nano.

[23]  Seung M. Oh,et al.  Preparation of Nanotube TiO2-Carbon Composite and Its Anode Performance in Lithium-Ion Batteries , 2009 .

[24]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[25]  Shuo Chen,et al.  Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. , 2009, Journal of the American Chemical Society.

[26]  Q. Gong,et al.  Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes , 2008 .

[27]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[28]  S. Ramaprabhu,et al.  Asymmetric Flexible Supercapacitor Stack , 2008, Nanoscale Research Letters.

[29]  J. Bisquert,et al.  Porosity dependence of electron percolation in nanoporous TiO2 layers. , 2008, The Journal of chemical physics.

[30]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[31]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[32]  P. Bruce,et al.  Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. , 2007, Physical chemistry chemical physics : PCCP.

[33]  Haoshen Zhou,et al.  Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode , 2007 .

[34]  P. Bruce,et al.  TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries , 2006 .

[35]  Yongyao Xia,et al.  An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes , 2005 .

[36]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[37]  S. Bonnamy,et al.  New carbon multiwall nanotubes – TiO2 nanocomposites obtained by the sol–gel method , 2004 .

[38]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[39]  W. Yonggang,et al.  Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites , 2004 .

[40]  F. Fabregat‐Santiago,et al.  Electronic conductivity in nanostructured TiO2 films permeated with electrolyte , 2003 .

[41]  O. Park,et al.  Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes , 2002 .

[42]  O. Park,et al.  Morphology and electrochemical behaviour of ruthenium oxide thin film deposited on carbon paper , 2002 .

[43]  J. Tarascon,et al.  Metal oxides as negative electrode materials in Li-ion cells , 2002 .

[44]  J. W. Goodwin,et al.  Surface charge properties of colloidal titanium dioxide in ethylene glycol and water , 2002 .

[45]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[46]  Ladislav Kavan,et al.  Surfactant-Templated TiO2 (Anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures , 2000 .

[47]  S. H. Elder,et al.  Lithium insertion into zirconia-stabilized mesoscopic TiO2 (anatase) , 2000 .

[48]  Paula T. Hammond,et al.  Recent explorations in electrostatic multilayer thin film assembly , 1999 .

[49]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[50]  Jim P. Zheng,et al.  Amorphous thin film ruthenium oxide as an electrode material for electrochemical capacitors , 1995 .

[51]  S. Heijman,et al.  Preparation of oxide dispersions which are stabilized both sterically and electrostatically. , 1993 .

[52]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[53]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .