Geometric conditions for Kuhn-Tucker sufficiency of global optimality in mathematical programming
暂无分享,去创建一个
[1] Panos M. Pardalos,et al. Quadratic Programming with Box Constraints , 1997 .
[2] Zhi-You Wu,et al. Sufficient Global Optimality Conditions for Non-convex Quadratic Minimization Problems With Box Constraints , 2006, J. Glob. Optim..
[3] Olvi L. Mangasarian,et al. Nonlinear Programming , 1969 .
[4] N. Q. Huy,et al. Kuhn-Tucker sufficiency for global minimum of multi-extremal mathematical programming problems , 2007 .
[5] Christodoulos A. Floudas,et al. Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.
[6] J. Ben Rosen,et al. Approximating Data in $$\mathfrak{R}^{n}$$ by a Quadratic Underestimator with Specified Hessian Minimum and Maximum Eigenvalues , 2006, J. Glob. Optim..
[7] Arnold Neumaier,et al. An optimality criterion for global quadratic optimization , 1992, J. Glob. Optim..
[8] P. Pardalos,et al. Handbook of global optimization , 1995 .
[9] Morgan A. Hanson. A Generalization of the Kuhn-Tucker Sufficiency Conditions , 1994 .
[10] Jean-Baptiste Hiriart-Urruty. When is a point x satisfying $\nabla f(x) = 0 a global minimum of f ? , 1986 .
[12] B. Craven. Control and optimization , 2019, Mathematical Modelling of the Human Cardiovascular System.
[13] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[14] N. Q. Huy,et al. Sufficient global optimality conditions for multi-extremal smooth minimisation problems with bounds and linear matrix inequality constraints , 2006, The ANZIAM Journal.
[15] P. Pardalos,et al. From local to global optimization , 2001 .
[16] P. Pardalos,et al. Optimization in computational chemistry and molecular biology : local and global approaches , 2000 .
[17] J. Zowe,et al. Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .
[18] Arnold Neumaier. Second-order sufficient optimality conditions for local and global nonlinear programming , 1996, J. Glob. Optim..
[19] Vaithilingam Jeyakumar,et al. On generalised convex mathematical programming , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[20] C. Adjiman,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .
[21] M. A. Hanson. On sufficiency of the Kuhn-Tucker conditions , 1981 .
[22] Christodoulos A. Floudas,et al. Computational Experience with a New Class of Convex Underestimators: Box-constrained NLP Problems , 2004, J. Glob. Optim..
[23] Zhi-You Wu,et al. Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions , 2007, Math. Program..