A HIERARCHICAL MAX-STABLE SPATIAL MODEL FOR EXTREME PRECIPITATION.

Extreme environmental phenomena such as major precipitation events manifestly exhibit spatial dependence. Max-stable processes are a class of asymptotically-justified models that are capable of representing spatial dependence among extreme values. While these models satisfy modeling requirements, they are limited in their utility because their corresponding joint likelihoods are unknown for more than a trivial number of spatial locations, preventing, in particular, Bayesian analyses. In this paper, we propose a new random effects model to account for spatial dependence. We show that our specification of the random effect distribution leads to a max-stable process that has the popular Gaussian extreme value process (GEVP) as a limiting case. The proposed model is used to analyze the yearly maximum precipitation from a regional climate model.

[1]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[2]  M. Fuentes,et al.  Bayesian Variable Selection for Multivariate Spatially Varying Coefficient Regression , 2010, Biometrics.

[3]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[4]  A. Stephenson HIGH‐DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS , 2009 .

[5]  B. Shaby,et al.  The Open-Faced Sandwich Adjustment for MCMC Using Estimating Functions , 2012, 1204.3687.

[6]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[7]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[8]  Paul Deheuvels,et al.  Point processes and multivariate extreme values , 1983 .

[9]  A. Davison,et al.  Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.

[10]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[11]  P. Naveau,et al.  Variograms for spatial max-stable random fields , 2006 .

[12]  Jonathan A. Tawn,et al.  Inequalities for the Extremal Coefficients of Multivariate Extreme Value Distributions , 2002 .

[13]  Alec Stephenson,et al.  An extended Gaussian max-stable process model for spatial extremes , 2009 .

[14]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[15]  H. Joe Multivariate extreme value distributions , 1997 .

[16]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[17]  M. Fuentes,et al.  Nonparametric Bayesian models for a spatial covariance 1 , 2011 .

[18]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[19]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[20]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[21]  Raphael Huser,et al.  Space–time modelling of extreme events , 2012, 1201.3245.

[22]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[23]  S. Hubbert Extreme Value Theory , 2019, Handbook of Heavy-Tailed Distributions in Asset Management and Risk Management.

[24]  C. C. Heyde,et al.  Quasi-likelihood and Optimal Estimation , 2010 .

[25]  David Higdon,et al.  Non-Stationary Spatial Modeling , 2022, 2212.08043.

[26]  Conditional Sampling for Max-Stable Random Fields , 2010 .

[27]  C. Zhou,et al.  On spatial extremes: With application to a rainfall problem , 2008, 0807.4092.

[28]  Richard L. Smith,et al.  MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .

[29]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[30]  Montserrat Fuentes,et al.  Nonparametric Bayesian models for a spatial covariance. , 2012, Statistical methodology.

[31]  Marco Oesting,et al.  Simulation of Brown–Resnick processes , 2012 .

[32]  J. Nolan,et al.  Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.

[33]  Montserrat Fuentes,et al.  Nonparametric spatial models for extremes: application to extreme temperature data , 2013, Extremes.

[34]  M. Schlather,et al.  Capturing the multivariate extremal index: bounds and interconnections , 2008 .

[35]  Stuart G. Coles,et al.  Regional Modelling of Extreme Storms Via Max‐Stable Processes , 1993 .

[36]  An equivalent representation of the Brown-Resnick process , 2011 .

[37]  Marc G. Genton,et al.  On the likelihood function of Gaussian max-stable processes , 2011 .

[38]  Anthony C. Davison,et al.  Spatial modeling of extreme snow depth , 2011, 1111.7091.

[39]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[40]  Alexei G. Sankovski,et al.  Special report on emissions scenarios , 2000 .

[41]  Yizao Wang,et al.  Conditional sampling for spectrally discrete max-stable random fields , 2010, Advances in Applied Probability.

[42]  Yizao Wang,et al.  On the structure and representations of max-stable processes , 2009, Advances in Applied Probability.

[43]  Alan E. Gelfand,et al.  Continuous Spatial Process Models for Spatial Extreme Values , 2010 .

[44]  Richard L. Smith,et al.  On the estimation and application of max-stable processes , 2010 .

[45]  Jun Zhu,et al.  Nonparametric Bayesian inference for the spectral density function of a random field , 2010 .