On the Storage Cost of Private Information Retrieval

We consider the fundamental tradeoff between the storage cost and the download cost in private information retrieval systems, without any explicit structural restrictions on the storage codes, such as maximum distance separable codes or uncoded storage. Two novel outer bounds are provided, which have the following implications. When the messages are stored without any redundancy across the databases, the optimal PIR strategy is to download all the messages; on the other hand, for PIR capacity-achieving codes, each database can reduce the storage cost, from storing all the messages, by no more than one message on average. We then focus on the two-message two-database case, and show that a stronger outer bound can be derived through a novel pseudo-message technique.

[1]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[2]  James S. Plank,et al.  An Open-Source Toolbox for Computer-Aided Investigation on the Fundamental Limits of Information Systems, Version 0.1 , 2019, ArXiv.

[3]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[4]  Sennur Ulukus,et al.  Improved Storage for Efficient Private Information Retrieval , 2019, 2019 IEEE Information Theory Workshop (ITW).

[5]  Hua Sun,et al.  Private Information Retrieval from MDS Coded Data With Colluding Servers: Settling a Conjecture by Freij-Hollanti et al. , 2018, IEEE Transactions on Information Theory.

[6]  Luca Trevisan,et al.  Lower bounds for linear locally decodable codes and private information retrieval , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[7]  Andrei E. Romashchenko,et al.  How to Use Undiscovered Information Inequalities: Direct Applications of the Copy Lemma , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[8]  Chao Tian,et al.  Capacity-Achieving Private Information Retrieval Codes With Optimal Message Size and Upload Cost , 2018, IEEE Transactions on Information Theory.

[9]  Hua Sun,et al.  On the Capacity of Locally Decodable Codes , 2018, IEEE Transactions on Information Theory.

[10]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[11]  Hsuan-Yin Lin,et al.  Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes , 2017, IEEE Transactions on Information Theory.

[12]  Alexander Vardy,et al.  Lower Bound on the Redundancy of PIR Codes , 2016, ArXiv.

[13]  Chao Tian,et al.  On the Storage Cost of Private Information Retrieval , 2019, IEEE Transactions on Information Theory.

[14]  Syed Ali Jafar,et al.  The Capacity of Private Information Retrieval with Private Side Information , 2017, ArXiv.

[15]  Sennur Ulukus,et al.  Multi-Message Private Information Retrieval: Capacity Results and Near-Optimal Schemes , 2017, IEEE Transactions on Information Theory.

[16]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[17]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[18]  Chao Tian,et al.  Breaking the MDS-PIR Capacity Barrier via Joint Storage Coding , 2019, Inf..

[19]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[20]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval With Partially Known Private Side Information , 2019, IEEE Transactions on Information Theory.

[21]  Hua Sun,et al.  The Capacity of Symmetric Private Information Retrieval , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[22]  L. Ozarow,et al.  On a source-coding problem with two channels and three receivers , 1980, The Bell System Technical Journal.

[23]  Eitan Yaakobi,et al.  Codes for distributed PIR with low storage overhead , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[24]  Hua Sun,et al.  Multiround Private Information Retrieval: Capacity and Storage Overhead , 2016, IEEE Transactions on Information Theory.

[25]  Hua Sun,et al.  Blind interference alignment for private information retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[26]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.

[27]  Hua Sun,et al.  The Capacity of Symmetric Private Information Retrieval , 2019, IEEE Transactions on Information Theory.

[28]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval from Byzantine and Colluding Databases , 2017, IEEE Transactions on Information Theory.

[29]  Deepak Kumar,et al.  The Capacity of Private Information Retrieval From Uncoded Storage Constrained Databases , 2018, IEEE Transactions on Information Theory.

[30]  Chao Tian Characterizing the Rate Region of the (4,3,3) Exact-Repair Regenerating Codes , 2014, IEEE Journal on Selected Areas in Communications.

[31]  Chao Tian,et al.  A Shannon-Theoretic Approach to the Storage-Retrieval Tradeoff in PIR Systems , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[32]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[33]  Chao Tian,et al.  Capacity-Achieving Private Information Retrieval Codes from MDS-Coded Databases with Minimum Message Size , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[34]  Randall Dougherty,et al.  Non-Shannon Information Inequalities in Four Random Variables , 2011, ArXiv.

[35]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..