Encircling an exceptional point.
暂无分享,去创建一个
Heidelberg | Technische Universitat Darmstadt | H. Harney | W. Heiss | B. Dietz | A. Richter | A. Heine | S. Africa | C Dembowski | H L Harney | A Heine | W D Heiss | A Richter | M. Kernphysik | B Dietz | H-D Gräf | H. Gräf | U. Stellenbosch | C. Dembowski | Matieland | A. R. I. F. Kernphysik | D. O. Physics | Germany | D. Physics | T. U. Darmstadt
[1] M. Berry,et al. The optical singularities of birefringent dichroic chiral crystals , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[2] Phases of wave functions and level repulsion , 1999, quant-ph/9901023.
[3] Lauber,et al. Geometric phases and hidden symmetries in simple resonators. , 1994, Physical review letters.
[4] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[5] Off-diagonal geometric phases. , 1999, Physical review letters.
[6] S. Pancharatnam. The propagation of light in absorbing biaxial crystals — I. Theoretical , 1955 .
[7] F. Wilczek,et al. Geometric Phases in Physics , 1989 .
[8] Ingrid Rotter,et al. Dynamics of quantum systems embedded in a continuum , 2003 .
[9] M. Berry,et al. Diabolical points in the spectra of triangles , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[10] I. Rotter,et al. Collectivity, phase transitions and exceptional points in open quantum systems , 1998, quant-ph/9805038.
[11] H. L. Harney,et al. The chirality of exceptional points , 2001 .
[12] I Rotter. Exceptional points and double poles of the S matrix. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] H. Harney,et al. Experimental observation of the topological structure of exceptional points. , 2001, Physical review letters.
[14] H. Stöckmann,et al. Quantum Chaos: An Introduction , 1999 .
[15] Geometric phase in open systems. , 2003, Physical review letters.
[16] W. Voigt. Beiträge zur Aufklärung der Eigenschaften pleochroitischer Krystalle , 1902 .
[17] G. Nenciu,et al. On the adiabatic theorem for nonself-adjoint Hamiltonians , 1992 .
[18] S. Sridhar,et al. Experimental observation of scarred eigenfunctions of chaotic microwave cavities. , 1991, Physical review letters.
[19] Berry phase in a nonisolated system. , 2002, Physical review letters.
[20] F. Keck,et al. Unfolding a diabolic point: a generalized crossing scenario , 2003 .
[21] Heiss. Repulsion of resonance states and exceptional points , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[22] Richter,et al. Frequency and width crossing of two interacting resonances in a microwave cavity , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] Heidelberg,et al. Observation of a chiral state in a microwave cavity. , 2002, Physical review letters.
[24] Heine,et al. First experimental evidence for chaos-assisted tunneling in a microwave annular billiard , 1999, Physical review letters.