A hybrid approach for the 0-1 multidimensional knapsack problem

We present a hybrid approach for the 0-1 multidimensional knapsack problem. The proposed approach combines linear programming and Tabu Search. The resulting algorithm improves significantly on the best known results of a set of more than 150 benchmark instances.

[1]  Y. Toyoda A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems , 1975 .

[2]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[3]  E. Balas,et al.  Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .

[4]  Hasan Pirkul,et al.  ALLOCATION OF DATA BASES AND PROCESSORS IN A DISTRIBUTED COMPUTING SYSTEM. , 1982 .

[5]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[6]  A. Fréville,et al.  Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .

[7]  Stefan Voß,et al.  Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..

[8]  Arnaud Fréville,et al.  Sac à dos multidimensionnel en variables 0-1 : encadrement de la somme des variables à l'optimum , 1993 .

[9]  Kurt Jörnsten,et al.  Tabu Search for General Zero-One Integer Programs Using the Pivot and Complement Heuristic , 1994, INFORMS J. Comput..

[10]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[11]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[12]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[13]  Fred W. Glover,et al.  Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..