Boundary Harnack Principle and the Quasihyperbolic Boundary Condition

[1]  Hiroaki Aikawa Equivalence between the boundary Harnack principle and the Carleson estimate , 2008 .

[2]  Hiroaki Aikawa Boundary Harnack principle and Martin boundary for a uniform domain , 2001 .

[3]  Stephen J. Gardiner,et al.  Classical Potential Theory , 2000 .

[4]  A. Ancona First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains , 1997 .

[5]  R. Bass,et al.  Lifetimes of conditioned diffusions , 1992 .

[6]  R. Bass,et al.  Hölder domains and the boundary Harnack principle , 1991 .

[7]  R. Bass,et al.  A boundary Harnack principle in twisted Holder domains , 1991 .

[8]  R. Bañuelos Intrinsic ultracontractivity and eigenfunction estimates for Schrodinger operators , 1991 .

[9]  D. Stegenga,et al.  EXP ONENTIAL INTEGRABILITY OF THE QUASI-HYPERBOLIC METRIC ON TTöT,DER DOMAINS , 1991 .

[10]  D. Stegenga,et al.  Hölder domains and Poincaré domains , 1990 .

[11]  S. Salsa,et al.  A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations , 1986 .

[12]  Carlos E. Kenig,et al.  Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .

[13]  J. Wu Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains , 1978 .

[14]  A. Ancona Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .

[15]  Björn E. J. Dahlberg,et al.  Estimates of harmonic measure , 1977 .