Boundary Harnack Principle and the Quasihyperbolic Boundary Condition
暂无分享,去创建一个
[1] Hiroaki Aikawa. Equivalence between the boundary Harnack principle and the Carleson estimate , 2008 .
[2] Hiroaki Aikawa. Boundary Harnack principle and Martin boundary for a uniform domain , 2001 .
[3] Stephen J. Gardiner,et al. Classical Potential Theory , 2000 .
[4] A. Ancona. First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains , 1997 .
[5] R. Bass,et al. Lifetimes of conditioned diffusions , 1992 .
[6] R. Bass,et al. Hölder domains and the boundary Harnack principle , 1991 .
[7] R. Bass,et al. A boundary Harnack principle in twisted Holder domains , 1991 .
[8] R. Bañuelos. Intrinsic ultracontractivity and eigenfunction estimates for Schrodinger operators , 1991 .
[9] D. Stegenga,et al. EXP ONENTIAL INTEGRABILITY OF THE QUASI-HYPERBOLIC METRIC ON TTöT,DER DOMAINS , 1991 .
[10] D. Stegenga,et al. Hölder domains and Poincaré domains , 1990 .
[11] S. Salsa,et al. A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations , 1986 .
[12] Carlos E. Kenig,et al. Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .
[13] J. Wu. Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains , 1978 .
[14] A. Ancona. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .
[15] Björn E. J. Dahlberg,et al. Estimates of harmonic measure , 1977 .