Flexible metal-organic frameworks.

Advances in flexible and functional metal-organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009-2013 with reference to the early pertinent work since the late 1990s. Flexible MOFs combine the crystalline order of the underlying coordination network with cooperative structural transformability. These materials can respond to physical and chemical stimuli of various kinds in a tunable fashion by molecular design, which does not exist for other known solid-state materials. Among the fascinating properties are so-called breathing and swelling phenomena as a function of host-guest interactions. Phase transitions are triggered by guest adsorption/desorption, photochemical, thermal, and mechanical stimuli. Other important flexible properties of MOFs, such as linker rotation and sub-net sliding, which are not necessarily accompanied by crystallographic phase transitions, are briefly mentioned as well. Emphasis is given on reviewing the recent progress in application of in situ characterization techniques and the results of theoretical approaches to characterize and understand the breathing mechanisms and phase transitions. The flexible MOF systems, which are discussed, are categorized by the type of metal-nodes involved and how their coordination chemistry with the linker molecules controls the framework dynamics. Aspects of tailoring the flexible and responsive properties by the mixed component solid-solution concept are included, and as well examples of possible applications of flexible metal-organic frameworks for separation, catalysis, sensing, and biomedicine.

[1]  C. R. Murdock,et al.  Approaches for Synthesizing Breathing MOFs by Exploiting Dimensional Rigidity , 2014 .

[2]  A. Schneemann,et al.  Targeted manipulation of metal-organic frameworks to direct sorption properties. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  S. Kaskel,et al.  In situ monitoring of structural changes during the adsorption on flexible porous coordination polymers by X-ray powder diffraction: Instrumentation and experimental results , 2014 .

[4]  S. Kitagawa,et al.  Trapping of a spatial transient state during the framework transformation of a porous coordination polymer. , 2014, Journal of the American Chemical Society.

[5]  François-Xavier Coudert,et al.  Water Adsorption in Flexible Gallium-Based MIL-53 Metal−Organic Framework , 2014 .

[6]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[7]  U. Mueller,et al.  In situ observation of gating phenomena in the flexible porous coordination polymer Zn2(BPnDC)2(bpy) (SNU-9) in a combined diffraction and gas adsorption experiment. , 2014, Inorganic chemistry.

[8]  S. Sakaki,et al.  Self-Accelerating CO Sorption in a Soft Nanoporous Crystal , 2014, Science.

[9]  Andreas Schneemann,et al.  Massive Anisotropic Thermal Expansion and Thermo‐Responsive Breathing in Metal–Organic Frameworks Modulated by Linker Functionalization , 2013 .

[10]  R. Walton,et al.  Interaction of methanol with the flexible metal-organic framework MIL-53(Fe) observed by inelastic neutron scattering , 2013 .

[11]  Seth M. Cohen,et al.  The influence of nitro groups on the topology and gas sorption property of extended Zn(II)-paddlewheel MOFs , 2013 .

[12]  X. Bu,et al.  A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations. , 2013, Angewandte Chemie.

[13]  François-Xavier Coudert,et al.  Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics. , 2013, Physical chemistry chemical physics : PCCP.

[14]  Seth M. Cohen,et al.  Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework , 2013, Journal of the American Chemical Society.

[15]  Jing Li,et al.  Monitoring the Activation of a Flexible Metal–Organic Framework Using Structurally Sensitive Spectroscopy Techniques , 2013 .

[16]  Alexander V. Neimark,et al.  Adsorption Deformation and Structural Transitions in Metal−Organic Frameworks: From the Unit Cell to the Crystal , 2013 .

[17]  A. Schneemann,et al.  A Solid‐Solution Approach to Mixed‐Metal Metal–Organic Frameworks – Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks , 2013 .

[18]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[19]  B. Smit,et al.  Mapping of Functional Groups in Metal-Organic Frameworks , 2013, Science.

[20]  J. Hupp,et al.  Opening metal-organic frameworks Vol. 2: Inserting longer pillars into pillared-paddlewheel structures through solvent-assisted linker exchange , 2013 .

[21]  F. Guenneau,et al.  Flexibility of ZIF-8 materials studied using 129Xe NMR. , 2013, Chemical communications.

[22]  J. Greneche,et al.  Isomorphous substitution in a flexible metal-organic framework: mixed-metal, mixed-valent MIL-53 type materials. , 2013, Inorganic chemistry.

[23]  C. Morrison,et al.  Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments. , 2013, Journal of the American Chemical Society.

[24]  B. Rieger,et al.  Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups. , 2013, Chemistry.

[25]  Bryana L. Henderson,et al.  Photophysical pore control in an azobenzene-containing metal–organic framework , 2013 .

[26]  M. Melucci,et al.  “Click” on MOFs: A Versatile Tool for the Multimodal Derivatization of N3-Decorated Metal Organic Frameworks , 2013 .

[27]  D. D. De Vos,et al.  Adsorption of N/S heterocycles in the flexible metal-organic framework MIL-53(Fe(III)) studied by in situ energy dispersive X-ray diffraction. , 2013, Physical chemistry chemical physics : PCCP.

[28]  Tony D. Keene,et al.  Solvent-modified dynamic porosity in chiral 3D kagome frameworks. , 2013, Dalton transactions.

[29]  Chiu C Tang,et al.  Homologous critical behavior in the molecular frameworks Zn(CN)2 and Cd(imidazolate)2. , 2013, Journal of the American Chemical Society.

[30]  François-Xavier Coudert,et al.  Adsorption induced transitions in soft porous crystals: an osmotic potential approach to multistability and intermediate structures. , 2013, The Journal of chemical physics.

[31]  Leonard J Barbour,et al.  Tunable anisotropic thermal expansion of a porous zinc(II) metal-organic framework. , 2013, Journal of the American Chemical Society.

[32]  François-Xavier Coudert,et al.  Temperature-Induced Structural Transitions in the Gallium-Based MIL-53 Metal–Organic Framework , 2013 .

[33]  P. Voort,et al.  A General Strategy for the Synthesis of Functionalised UiO‐66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties , 2013 .

[34]  C. Serre,et al.  Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks , 2013 .

[35]  M. Hill,et al.  Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release. , 2013, Angewandte Chemie.

[36]  M. W. George,et al.  Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. , 2013, Journal of the American Chemical Society.

[37]  S. Kitagawa,et al.  Pore design of two-dimensional coordination polymers toward selective adsorption. , 2013, Inorganic chemistry.

[38]  Lixian Sun,et al.  Enhanced selectivity of CO(2) over CH(4) in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. , 2013, Dalton transactions.

[39]  J. Hupp,et al.  Solvent-assisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal–organic framework materials , 2013 .

[40]  Seth M. Cohen,et al.  Dioxole functionalized metal-organic frameworks. , 2013, Dalton transactions.

[41]  C. Detavernier,et al.  Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. , 2013, Physical chemistry chemical physics : PCCP.

[42]  Hideki Tanaka,et al.  Simulation study for adsorption-induced structural transition in stacked-layer porous coordination polymers: equilibrium and hysteretic adsorption behaviors. , 2013, The Journal of chemical physics.

[43]  Kevin J. Gagnon,et al.  MOFs under pressure: the reversible compression of a single crystal. , 2013, Journal of the American Chemical Society.

[44]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[45]  S. Kitagawa,et al.  Highly selective CO2 adsorption accompanied with low-energy regeneration in a two-dimensional Cu(II) porous coordination polymer with inorganic fluorinated PF6(-) anions. , 2013, Inorganic chemistry.

[46]  Kyriakos C. Stylianou,et al.  Dimensionality transformation through paddlewheel reconfiguration in a flexible and porous Zn-based metal-organic framework. , 2012, Journal of the American Chemical Society.

[47]  Jun Kim,et al.  Amine-functionalized MIL-53(Al) for CO2/N2 separation: Effect of textural properties , 2012 .

[48]  S. Kaskel,et al.  Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs) , 2012, Materials.

[49]  G. Garberoglio,et al.  Modeling flexibility in metal–organic frameworks: Comparison between Density-Functional Tight-Binding and Universal Force Field approaches for bonded interactions , 2012 .

[50]  François-Xavier Coudert,et al.  Understanding adsorption-induced structural transitions in metal-organic frameworks: from the unit cell to the crystal. , 2012, The Journal of chemical physics.

[51]  D. Vos,et al.  Vapor-Phase Adsorption and Separation of Ethylbenzene and Styrene on the Metal–Organic Frameworks MIL-47 and MIL-53(Al) , 2012 .

[52]  A. J. Blake,et al.  Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. , 2012, Nature chemistry.

[53]  J. Hupp,et al.  Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. , 2012, Journal of the American Chemical Society.

[54]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[55]  S. Kitagawa,et al.  A soft copper(II) porous coordination polymer with unprecedented aqua bridge and selective adsorption properties. , 2012, Chemistry.

[56]  J. Hupp,et al.  Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange , 2012 .

[57]  François-Xavier Coudert,et al.  Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? , 2012, Physical review letters.

[58]  C. Serre,et al.  Tuning the breathing behaviour of MIL-53 by cation mixing. , 2012, Chemical communications.

[59]  G. Zhu,et al.  Hydrogen Selective NH2‐MIL‐53(Al) MOF Membranes with High Permeability , 2012 .

[60]  M. Allendorf,et al.  Effects of Polarizability on the Adsorption of Noble Gases at Low Pressures in Monohalogenated Isoreticular Metal–Organic Frameworks , 2012 .

[61]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[62]  Andrew L. Goodwin,et al.  Supramolecular mechanics in a metal–organic framework , 2012 .

[63]  M. W. George,et al.  Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework , 2012 .

[64]  F. Kapteijn,et al.  Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[65]  J. Long,et al.  CO2 dynamics in a metal-organic framework with open metal sites. , 2012, Journal of the American Chemical Society.

[66]  A. Torrisi,et al.  Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. , 2012, Dalton transactions.

[67]  Yoshiki Kubota,et al.  Modular design of domain assembly in porous coordination polymer crystals via reactivity-directed crystallization process. , 2012, Journal of the American Chemical Society.

[68]  A. J. Blake,et al.  A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. , 2012, Nature materials.

[69]  Wei Li,et al.  Negative linear compressibility of a metal-organic framework. , 2012, Journal of the American Chemical Society.

[70]  D. Vos,et al.  Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe) , 2012 .

[71]  S. Kitagawa,et al.  Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function. , 2012, Chemical communications.

[72]  P. K. Bharadwaj,et al.  Direct crystallographic observation of catalytic reactions inside the pores of a flexible coordination polymer. , 2012, Chemistry.

[73]  Andreas Schneemann,et al.  Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. , 2012, Journal of the American Chemical Society.

[74]  Denis Rodrigue,et al.  Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation , 2012 .

[75]  Martin R. Lohe,et al.  Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M = Ni, Cu, Co, Zn) metal–organic frameworks , 2012 .

[76]  C. Serre,et al.  Effect of the organic functionalization of flexible MOFs on the adsorption of CO2 , 2012 .

[77]  M. Pera‐Titus,et al.  Homogeneity of flexible metal–organic frameworks containing mixed linkers , 2012 .

[78]  Seth M. Cohen,et al.  Near-UV photo-induced modification in isoreticular metal–organic frameworks , 2012 .

[79]  Seth M. Cohen,et al.  Single-atom ligand changes affect breathing in an extended metal-organic framework. , 2012, Inorganic chemistry.

[80]  Kira Khaletskaya,et al.  Microporous Mixed‐Metal Layer‐Pillared [Zn1–xCux(bdc)(dabco)0.5] MOFs: Preparation and Characterization , 2012 .

[81]  A. Slawin,et al.  A novel structural form of MIL-53 observed for the scandium analogue and its response to temperature variation and CO2 adsorption. , 2012, Dalton transactions.

[82]  A. Ghoufi,et al.  Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a joint experimental–modelling exploration , 2012 .

[83]  Masafumi Inoue,et al.  Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. , 2012, Journal of the American Chemical Society.

[84]  B. Rieger,et al.  Tandem post-synthetic modification for functionalized metal-organic frameworks via epoxidation and subsequent epoxide ring-opening. , 2012, Chemical communications.

[85]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[86]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[87]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[88]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[89]  Jinhee Park,et al.  Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. , 2012, Journal of the American Chemical Society.

[90]  G. Jameson,et al.  Photolabile protecting groups in metal-organic frameworks: preventing interpenetration and masking functional groups. , 2012, Chemical communications.

[91]  François-Xavier Coudert,et al.  Predicting mixture coadsorption in soft porous crystals: experimental and theoretical Study of CO2/CH4 in MIL-53(Al). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[92]  Xiu‐Ping Yan,et al.  High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. , 2012, The Analyst.

[93]  Seth M. Cohen,et al.  Metal-organic framework regioisomers based on bifunctional ligands. , 2011, Angewandte Chemie.

[94]  Dorina F. Sava,et al.  Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization. , 2011, Journal of the American Chemical Society.

[95]  C. Riekel,et al.  How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. , 2011, Journal of the American Chemical Society.

[96]  R. Fischer,et al.  Multiple phase-transitions upon selective CO2 adsorption in an alkyl ether functionalized metal–organic framework—an in situ X-ray diffraction study , 2011 .

[97]  T. Uemura,et al.  Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. , 2011, Nature materials.

[98]  A. Vimont,et al.  Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a Porous Metal Organic Framework: MIL-47(V) , 2011 .

[99]  Shyam Biswas,et al.  New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: syntheses, characterization, sorption, and breathing behavior. , 2011, Inorganic chemistry.

[100]  Wonyoung Choe,et al.  "Nanoscale lattice fence" in a metal-organic framework: interplay between hinged topology and highly anisotropic thermal response. , 2011, Journal of the American Chemical Society.

[101]  A. Cheetham,et al.  Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. , 2011, Journal of the American Chemical Society.

[102]  François-Xavier Coudert,et al.  Mechanism of Breathing Transitions in Metal–Organic Frameworks , 2011 .

[103]  S. Kitagawa,et al.  Porous coordination polymer hybrid device with quartz oscillator: effect of crystal size on sorption kinetics. , 2011, Journal of the American Chemical Society.

[104]  S. Kitagawa,et al.  A pillared-bilayer porous coordination polymer with a 1D channel and a 2D interlayer space, showing unique gas and vapor sorption. , 2011, Chemical communications.

[105]  S. Kitagawa,et al.  Differences of crystal structure and dynamics between a soft porous nanocrystal and a bulk crystal. , 2011, Chemical communications.

[106]  R. Walton,et al.  Uptake of liquid alcohols by the flexible Fe(III) metal-organic framework MIL-53 observed by time-resolved in situ X-ray diffraction. , 2011, Chemistry.

[107]  S. Kitagawa,et al.  Soft secondary building unit: dynamic bond rearrangement on multinuclear core of porous coordination polymers in gas media. , 2011, Journal of the American Chemical Society.

[108]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[109]  Andrew D. Burrows,et al.  Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications , 2011 .

[110]  G. Seifert,et al.  High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal-organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). , 2011, Journal of the American Chemical Society.

[111]  Rainer Herges,et al.  The first porous MOF with photoswitchable linker molecules. , 2011, Dalton transactions.

[112]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[113]  A. Cheetham,et al.  Thermal amorphization of zeolitic imidazolate frameworks. , 2011, Angewandte Chemie.

[114]  François-Xavier Coudert,et al.  Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[115]  Hermann Emerich,et al.  SNBL, a dedicated beamline for combined in situ X-ray diffraction, X-ray absorption and Raman scattering experiments , 2011 .

[116]  Anthony K. Cheetham,et al.  Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. , 2011, Chemical Society reviews.

[117]  Martin R. Lohe,et al.  A highly porous flexible Metal-Organic Framework with corundum topology. , 2011, Chemical communications.

[118]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[119]  S. Kitagawa,et al.  Modification of flexible part in Cu(2+) interdigitated framework for CH(4)/CO(2) separation. , 2010, Chemical communications.

[120]  Seth M Cohen,et al.  Photochemical activation of a metal-organic framework to reveal functionality. , 2010, Angewandte Chemie.

[121]  A. Fuchs,et al.  The Behavior of Flexible MIL-53(Al) upon CH4 and CO2 Adsorption , 2010, 1904.11921.

[122]  K. Lillerud,et al.  X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. , 2010, Chemical Society reviews.

[123]  B. Weckhuysen,et al.  Infrared and Raman imaging of heterogeneous catalysts. , 2010, Chemical Society reviews.

[124]  Y. Filinchuk,et al.  Versatile in situ powder X-ray diffraction cells for solid–gas investigations , 2010, Journal of applied crystallography.

[125]  Seth M Cohen,et al.  Isoreticular synthesis and modification of frameworks with the UiO-66 topology. , 2010, Chemical communications.

[126]  Kenichi Kato,et al.  Control of interpenetration for tuning structural flexibility influences sorption properties. , 2010, Angewandte Chemie.

[127]  C. Serre,et al.  Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.

[128]  J. Soler,et al.  Flexibility in a metal-organic framework material controlled by weak dispersion forces: the bistability of MIL-53(Al). , 2010, Angewandte Chemie.

[129]  A. Ghoufi,et al.  Physics Behind the Guest-Assisted Structural Transitions of a Porous Metal−Organic Framework Material , 2010 .

[130]  C. Serre,et al.  Multistep N2 breathing in the metal-organic framework co(1,4-benzenedipyrazolate). , 2010, Journal of the American Chemical Society.

[131]  Martin R. Lohe,et al.  Monitoring adsorption-induced switching by (129)Xe NMR spectroscopy in a new metal-organic framework Ni(2)(2,6-ndc)(2)(dabco). , 2010, Physical chemistry chemical physics : PCCP.

[132]  François-Xavier Coudert The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials. , 2010, Physical chemistry chemical physics : PCCP.

[133]  T. Loiseau,et al.  129Xe NMR study of the framework flexibility of the porous hybrid MIL-53(Al). , 2010, Journal of the American Chemical Society.

[134]  Keiji Nakagawa,et al.  Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. , 2010, Angewandte Chemie.

[135]  C. Serre,et al.  Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). , 2010, Journal of the American Chemical Society.

[136]  S. Telfer,et al.  Thermolabile groups in metal-organic frameworks: suppression of network interpenetration, post-synthetic cavity expansion, and protection of reactive functional groups. , 2010, Angewandte Chemie.

[137]  Keiji Nakagawa,et al.  Enhanced selectivity of CO2 from a ternary gas mixture in an interdigitated porous framework. , 2010, Chemical communications.

[138]  Seth M. Cohen Modifying MOFs: new chemistry, new materials , 2010 .

[139]  M. Wagemaker,et al.  Hydrogen in the Metal−Organic Framework Cr MIL-53 , 2010 .

[140]  Keiji Nakagawa,et al.  Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. , 2010, Nature chemistry.

[141]  Seth M. Cohen,et al.  Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. , 2010, Journal of the American Chemical Society.

[142]  T. Bein,et al.  Sorption behavior of an oriented surface-grown MOF-film studied by in situ X-ray diffraction , 2010 .

[143]  A. Ghoufi,et al.  Hybrid Monte Carlo Simulations Combined with a Phase Mixture Model to Predict the Structural Transitions of a Porous Metal−Organic Framework Material upon Adsorption of Guest Molecules , 2010 .

[144]  C. Pinel,et al.  Generic postfunctionalization route from amino-derived metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[145]  P. Allan,et al.  In situ single-crystal diffraction studies of the structural transition of metal-organic framework copper 5-sulfoisophthalate, Cu-SIP-3. , 2010, Journal of the American Chemical Society.

[146]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[147]  S. Kitagawa,et al.  Systematic Construction of Porous Coordination Pillared-layer Structures and Their Sorption Properties , 2010 .

[148]  C. Serre,et al.  Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions. , 2010, Journal of the American Chemical Society.

[149]  M. P. Suh,et al.  Stepwise and hysteretic sorption of N(2), O(2), CO(2), and H(2) gases in a porous metal-organic framework [Zn(2)(BPnDC)(2)(bpy)]. , 2010, Chemical communications.

[150]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[151]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[152]  K. Chapman,et al.  Pressure-induced amorphization and porosity modification in a metal-organic framework. , 2009, Journal of the American Chemical Society.

[153]  S. Kitagawa,et al.  New Interpenetrated Copper Coordination Polymer Frameworks having Porous Properties , 2009 .

[154]  A. Ghoufi,et al.  Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. , 2009, Journal of the American Chemical Society.

[155]  Seth M. Cohen,et al.  Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach. , 2009, Journal of the American Chemical Society.

[156]  François-Xavier Coudert,et al.  Breathing transitions in MIL-53(Al) metal-organic framework upon xenon adsorption. , 2009, Angewandte Chemie.

[157]  S. Nguyen,et al.  Selective bifunctional modification of a non-catenated metal-organic framework material via "click" chemistry. , 2009, Journal of the American Chemical Society.

[158]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[159]  C. Serre,et al.  Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). , 2009, Journal of the American Chemical Society.

[160]  S. Kitagawa,et al.  A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. , 2009, Journal of the American Chemical Society.

[161]  A. Baiker,et al.  Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2 , 2009 .

[162]  C. Frost,et al.  Sulfur-tagged metal-organic frameworks and their post-synthetic oxidation. , 2009, Chemical communications.

[163]  Gérard Férey,et al.  Some suggested perspectives for multifunctional hybrid porous solids. , 2009, Dalton transactions.

[164]  M. Fröba,et al.  New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate) , 2009 .

[165]  Hideki Tanaka,et al.  Free energy analysis for adsorption-induced lattice transition of flexible coordination framework. , 2009, The Journal of chemical physics.

[166]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[167]  Xiaoping Wang,et al.  Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework. , 2009, Angewandte Chemie.

[168]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[169]  François-Xavier Coudert,et al.  Double structural transition in hybrid material MIL-53 upon hydrocarbon adsorption: the thermodynamics behind the scenes. , 2009, Journal of the American Chemical Society.

[170]  C. Serre,et al.  Single crystal X-ray diffraction studies of carbon dioxide and fuel-related gases adsorbed on the small pore scandium terephthalate metal organic framework, Sc2(O2CC6H4CO2)3. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[171]  Matthew G. Tucker,et al.  Large negative linear compressibility of Ag3[Co(CN)6] , 2008, Proceedings of the National Academy of Sciences.

[172]  S. Kaskel,et al.  Structural transformation and high pressure methane adsorption of Co2(1,4-bdc)2dabco , 2008 .

[173]  C. Serre,et al.  Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). , 2008, Journal of the American Chemical Society.

[174]  Scott R. Wilson,et al.  Covalent surface modification of a metal-organic framework: selective surface engineering via Cu(I)-catalyzed Huisgen cycloaddition. , 2008, Chemical communications.

[175]  V. K. Peterson,et al.  Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.

[176]  J. Greneche,et al.  Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. , 2008, Chemical communications.

[177]  A. Ghoufi,et al.  Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. , 2008, Angewandte Chemie.

[178]  S. Shinkai,et al.  "Clickable" metal-organic framework. , 2008, Journal of the American Chemical Society.

[179]  François-Xavier Coudert,et al.  Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. , 2008, Journal of the American Chemical Society.

[180]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[181]  S. Kitagawa,et al.  Storage and sorption properties of acetylene in jungle-gym-like open frameworks. , 2008, Chemistry, an Asian journal.

[182]  C. Serre,et al.  Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. , 2008, Journal of the American Chemical Society.

[183]  J. Simpson,et al.  Origin of the Exceptional Negative Thermal Expansion in Metal-Organic Framework-5 Zn 4 O(1,4-benzenedicarboxylate) 3 , 2008 .

[184]  A. Ghoufi,et al.  Quasi-elastic neutron scattering and molecular dynamics study of methane diffusion in metal organic frameworks MIL-47(V) and MIL-53(Cr). , 2008, Angewandte Chemie.

[185]  D. Neumann,et al.  Reversible structural transition in MIL-53 with large temperature hysteresis. , 2008, Journal of the American Chemical Society.

[186]  K. Chapman,et al.  Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material. , 2008, Journal of the American Chemical Society.

[187]  Seth M. Cohen,et al.  Tandem modification of metal-organic frameworks by a postsynthetic approach. , 2008, Angewandte Chemie.

[188]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[189]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[190]  Satoshi Watanabe,et al.  Molecular simulation of condensation process of Lennard-Jones fluids confined in nanospace with jungle-gym structure , 2008 .

[191]  S. Kitagawa,et al.  Chemistry and application of flexible porous coordination polymers , 2008, Science and technology of advanced materials.

[192]  H. Noguchi,et al.  Double-step gas sorption of a two-dimensional metal-organic framework. , 2007, Journal of the American Chemical Society.

[193]  Zhenqiang Wang,et al.  Postsynthetic covalent modification of a neutral metal-organic framework. , 2007, Journal of the American Chemical Society.

[194]  H. Kita,et al.  Two-step adsorption/desorption on a jungle-gym-type porous coordination polymer. , 2007, Angewandte Chemie.

[195]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[196]  Mark Nieuwenhuyzen,et al.  A pillared-grid MOF with large pores based on the Cu2(O2CR)4 paddle-wheel , 2007 .

[197]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[198]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[199]  C. Serre,et al.  A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. , 2006, Chemical communications.

[200]  H. Noguchi,et al.  Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO(2) molecules. , 2006, Nano letters.

[201]  Tatsuo C. Kobayashi,et al.  Metastable sorption state of a metal-organic porous material determined by in situ synchrotron powder diffraction. , 2006, Angewandte Chemie.

[202]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[203]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[204]  C. Serre,et al.  Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. , 2005, Journal of the American Chemical Society.

[205]  A. Jacobson,et al.  In(OH)BDC.0.75BDCH2 (BDC = Benzenedicarboxylate), a hybrid inorganic-organic vernier structure. , 2005, Journal of the American Chemical Society.

[206]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[207]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[208]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[209]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[210]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[211]  A. Goodwin,et al.  Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials , 2005 .

[212]  F. Taulelle,et al.  Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O , 2005 .

[213]  Gérard Férey,et al.  A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. , 2004, Angewandte Chemie.

[214]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[215]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[216]  Tatsuo C. Kobayashi,et al.  Rational design and crystal structure determination of a 3-D metal-organic jungle-gym-like open framework. , 2004, Inorganic chemistry.

[217]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[218]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[219]  Susumu Kitagawa,et al.  Porous coordination-polymer crystals with gated channels specific for supercritical gases. , 2003, Angewandte Chemie.

[220]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[221]  C. Serre,et al.  Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C-C6H4-CO2).(HO2C-C6H4-CO2H)x. , 2002, Chemical communications.

[222]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[223]  W. Mori,et al.  Syntheses and Characterization of Microporous Coordination Polymers with Open Frameworks , 2002 .

[224]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[225]  J. Fraissard,et al.  Nuclear Magnetic Resonance of Physisorbed 129Xe Used as a Probe to Investigate Porous Solids , 1999 .

[226]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[227]  S. Kitagawa,et al.  Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds , 1998 .

[228]  Susumu Kitagawa,et al.  A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies , 2012 .

[229]  A. Schneemann,et al.  Zinc-1,4-benzenedicarboxylate-bipyridine frameworks – linker functionalization impacts network topology during solvothermal synthesis , 2012 .

[230]  Seth M. Cohen,et al.  Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks , 2012 .