Empirical Merging of Ontologies - A Proposal of Universal Uncertainty Representation Framework

The significance of uncertainty representation has become obvious in the Semantic Web community recently. This paper presents our research on uncertainty handling in automatically created ontologies. A new framework for uncertain information processing is proposed. The research is related to OLE (Ontology LEarning) — a project aimed at bottom–up generation and merging of domain–specific ontologies. Formal systems that underlie the uncertainty representation are briefly introduced. We discuss the universal internal format of uncertain conceptual structures in OLE then and offer a utilisation example then. The proposed format serves as a basis for empirical improvement of initial knowledge acquisition methods as well as for general explicit inference tasks.

[1]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[2]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[3]  Doug Downey,et al.  Web-scale information extraction in knowitall: (preliminary results) , 2004, WWW '04.

[4]  D. Hofstadter Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, Douglas Hofstadter. 1994. Basic Books, New York, NY. 512 pages. ISBN: 0-465-05154-5. $30.00 , 1995 .

[5]  Luis Garmendia,et al.  Computing a Transitive Opening of a Reflexive and Symmetric Fuzzy Relation , 2005, ECSQARU.

[6]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[7]  Peggy Kamuf,et al.  A Derrida reader : between the blinds , 1992 .

[8]  Eero Hyvönen,et al.  A method for modeling uncertainty in semantic web taxonomies , 2004, WWW Alt. '04.

[9]  Eric Brill A Report of Recent Progress in Transformation-Based Error-Driven Learning , 1994, HLT.

[10]  Peggy Kamuf,et al.  A Derrida Reader: Between the Blinds , 1991 .

[11]  Margaret A. Boden,et al.  Douglas Hofstadter and the Fluid Analogies Research Group, Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought , 2004, Minds and Machines.

[12]  Thomas Lukasiewicz,et al.  P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for Probabilistic Ontologies in the Semantic Web , 2002, JELIA.

[13]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[14]  Steffen Staab,et al.  Ontology Learning , 2004, Encyclopedia of Machine Learning and Data Mining.

[15]  Yun Peng,et al.  Bayesowl: a probabilistic framework for uncertainty in semantic web , 2005 .

[16]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[17]  Gerda Ruge,et al.  Combining Corpus Linguistics and Human Memory Models for Automatic Term Association , 1999 .

[18]  Hubert Cuyckens,et al.  Cognitive Approaches to Lexical Semantics , 2003 .

[19]  Vít Novácek,et al.  Ontology Acquisition for Automatic Building of Scientific Portals , 2006, SOFSEM.

[20]  Jens Allwood,et al.  MEANING POTENTIALS AND CONTEXT : SOME CONSEQUENCES FOR THE ANALYSIS OF VARIATION IN MEANING , 2003 .

[21]  Yang Xiang,et al.  PROBABILISTIC REASONING IN MULTIAGENT SYSTEMS: A GRAPHICAL MODELS APPROACH, by Yang Xiang, Cambridge University Press, Cambridge, 2002, xii + 294 pp., ISBN 0-521-81308-5 (Hardback, £45.00). , 2002, Robotica.

[22]  Yorick Wilks,et al.  Data Driven Ontology Evaluation , 2004, LREC.

[23]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[24]  George J. Klir,et al.  Uncertainty-Based Information , 1999 .