Hook Formulas for Skew Shapes IV. Increasing Tableaux and Factorial Grothendieck Polynomials

We present a new family of hook-length formulas for the number of standard increasing tableaux which arise in the study of factorial Grothendieck polynomials. In the case of straight shapes our formulas generalize the classical hook-length formula and Stanley’s formula. For skew shapes, our formulas generalize the Naruse hook-length formula and its q-analogues, which were studied in previous papers of the series.

[1]  Bruce E. Sagan,et al.  A Littlewood-Richardson rule for factorial Schur functions , 1997 .

[2]  Hiroshi Naruse,et al.  Excited Young diagrams and equivariant Schubert calculus , 2007 .

[3]  I. G. MacDonald Schur functions: Theme and variations. , 1992 .

[4]  William Graham,et al.  Excited Young diagrams, equivariant K -theory, and Schubert varieties , 2013, 1302.3009.

[5]  Greta Panova,et al.  Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications , 2016, SIAM J. Discret. Math..

[6]  Paul H. Edelman,et al.  Balanced tableaux , 1987 .

[7]  Zachary Hamaker,et al.  Relating Edelman–Greene insertion to the Little map , 2012, 1210.7119.

[8]  Laurent Manivel,et al.  Symmetric Functions Schubert Polynomials and Degeneracy Loci , 2001 .

[9]  Richard P. Stanley,et al.  A Formula for the Specialization of Skew Schur Functions , 2016 .

[10]  Robert A. Sulanke,et al.  The Narayana distribution , 2002 .

[11]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[12]  Sergey Fomin,et al.  Grothendieck polynomials and the Yang - Baxter equation , 1994 .

[14]  R. Stanley Some Schubert shenanigans , 2017, 1704.00851.

[15]  Alexander Yong,et al.  Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm , 2008, Adv. Appl. Math..

[16]  Alexander Yong,et al.  Equivariant Schubert calculus and jeu de taquin , 2012 .

[17]  Hiroshi Naruse,et al.  K-theoretic analogues of factorial Schur P- and Q-functions , 2011, 1112.5223.

[18]  A. Morales,et al.  On the Okounkov-Olshanski formula for standard tableaux of skew shapes. , 2020, 2007.05006.

[19]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[20]  Peter J. McNamara,et al.  Factorial Schur functions and the Yang-Baxter equation , 2011, 1108.3087.

[21]  Sergey Fomin,et al.  Reduced Words and Plane Partitions , 1997 .

[22]  Peter L. Guo,et al.  Proof of a Conjecture of Reiner-Tenner-Yong on Barely Set-Valued Tableaux , 2018, SIAM J. Discret. Math..

[23]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[24]  Nathan Williams,et al.  Doppelgängers: Bijections of Plane Partitions , 2016, 1602.05535.

[25]  Michel Brion,et al.  Lectures on the Geometry of Flag Varieties , 2005 .

[26]  Thomas Lam,et al.  Back stable Schubert calculus , 2018, Compositio Mathematica.

[27]  Igor Pak,et al.  The weighted hook length formula , 2010, J. Comb. Theory, Ser. A.

[28]  Igor Pak,et al.  Bijecting hidden symmetries for skew staircase shapes , 2021, 2103.09551.

[29]  Victor Reiner,et al.  Poset edge densities, nearly reduced words, and barely set-valued tableaux , 2016, J. Comb. Theory A.

[30]  Peter R. W. McNamara Factorial Grothendieck Polynomials , 2006, Electron. J. Comb..

[31]  Jang Soo Kim,et al.  Reverse plane partitions of skew staircase shapes and q-Euler numbers , 2017, J. Comb. Theory, Ser. A.

[32]  Greta Panova,et al.  Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.

[33]  D. Littlewood,et al.  The Theory of Group Characters and Matrix Representations of Groups , 2006 .

[34]  S. Okada,et al.  Skew hook formula for $d$-complete posets via equivariant $K$-theory , 2019, Algebraic Combinatorics.

[35]  Alexander Yong,et al.  Stable Grothendieck polynomials and K-theoretic factor sequences , 2005 .

[36]  Igor Pak,et al.  Hook length formula and geometric combinatorics. , 2001 .

[37]  Anna Weigandt,et al.  Bumpless pipe dreams and alternating sign matrices , 2020, J. Comb. Theory, Ser. A.

[38]  Matjaz Konvalinka,et al.  A bijective proof of the hook-length formula for skew shapes , 2017, Electron. Notes Discret. Math..

[39]  V. Kreiman Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Grassmannian , 2005 .

[40]  Grigori Olshanski,et al.  Shifted Schur Functions , 1996 .

[41]  A. Yong,et al.  Reduced Word Enumeration, Complexity, and Randomization , 2019, Electron. J. Comb..

[42]  S. Fomin,et al.  Yang-Baxter equation, symmetric functions and Grothendieck polynomials , 1993, hep-th/9306005.

[43]  Ezra Miller,et al.  Gröbner geometry of vertex decompositions and of flagged tableaux , 2005, math/0502144.

[44]  Oliver Pechenik Minuscule analogues of the plane partition periodicity conjecture of Cameron and Fon-Der-Flaass , 2021 .

[45]  A. Yong,et al.  EQUIVARIANT $K$ -THEORY OF GRASSMANNIANS , 2015, Forum of Mathematics, Pi.

[46]  H. Wilf,et al.  A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .

[47]  Affine Weyl Groups in K-Theory and Representation Theory , 2003, math/0309207.

[48]  J. S. Frame,et al.  The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.

[49]  Igor Pak,et al.  A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..

[50]  Jessica Striker,et al.  Resonance in orbits of plane partitions and increasing tableaux , 2015, J. Comb. Theory, Ser. A.

[51]  Alexander Yong,et al.  A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus , 2007, 0705.2915.

[52]  Oliver Pechenik Cyclic sieving of increasing tableaux and small Schröder paths , 2014, J. Comb. Theory, Ser. A.

[53]  A. Buch Combinatorial K-theory , 2005 .

[54]  I. Pak,et al.  Asymptotics of principal evaluations of Schubert polynomials for layered permutations , 2018, Proceedings of the American Mathematical Society.

[55]  Greta Panova,et al.  Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.

[56]  H. H. Andersen,et al.  Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .

[57]  S. Billey,et al.  Kostant polynomials and the cohomology ring for G/B. , 1997, Proceedings of the National Academy of Sciences of the United States of America.