Hook Formulas for Skew Shapes IV. Increasing Tableaux and Factorial Grothendieck Polynomials
暂无分享,去创建一个
[1] Bruce E. Sagan,et al. A Littlewood-Richardson rule for factorial Schur functions , 1997 .
[2] Hiroshi Naruse,et al. Excited Young diagrams and equivariant Schubert calculus , 2007 .
[3] I. G. MacDonald. Schur functions: Theme and variations. , 1992 .
[4] William Graham,et al. Excited Young diagrams, equivariant K -theory, and Schubert varieties , 2013, 1302.3009.
[5] Greta Panova,et al. Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications , 2016, SIAM J. Discret. Math..
[6] Paul H. Edelman,et al. Balanced tableaux , 1987 .
[7] Zachary Hamaker,et al. Relating Edelman–Greene insertion to the Little map , 2012, 1210.7119.
[8] Laurent Manivel,et al. Symmetric Functions Schubert Polynomials and Degeneracy Loci , 2001 .
[9] Richard P. Stanley,et al. A Formula for the Specialization of Skew Schur Functions , 2016 .
[10] Robert A. Sulanke,et al. The Narayana distribution , 2002 .
[11] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[12] Sergey Fomin,et al. Grothendieck polynomials and the Yang - Baxter equation , 1994 .
[14] R. Stanley. Some Schubert shenanigans , 2017, 1704.00851.
[15] Alexander Yong,et al. Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm , 2008, Adv. Appl. Math..
[16] Alexander Yong,et al. Equivariant Schubert calculus and jeu de taquin , 2012 .
[17] Hiroshi Naruse,et al. K-theoretic analogues of factorial Schur P- and Q-functions , 2011, 1112.5223.
[18] A. Morales,et al. On the Okounkov-Olshanski formula for standard tableaux of skew shapes. , 2020, 2007.05006.
[19] Anders Skovsted Buch. A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .
[20] Peter J. McNamara,et al. Factorial Schur functions and the Yang-Baxter equation , 2011, 1108.3087.
[21] Sergey Fomin,et al. Reduced Words and Plane Partitions , 1997 .
[22] Peter L. Guo,et al. Proof of a Conjecture of Reiner-Tenner-Yong on Barely Set-Valued Tableaux , 2018, SIAM J. Discret. Math..
[23] Ezra Miller,et al. Gröbner geometry of Schubert polynomials , 2001 .
[24] Nathan Williams,et al. Doppelgängers: Bijections of Plane Partitions , 2016, 1602.05535.
[25] Michel Brion,et al. Lectures on the Geometry of Flag Varieties , 2005 .
[26] Thomas Lam,et al. Back stable Schubert calculus , 2018, Compositio Mathematica.
[27] Igor Pak,et al. The weighted hook length formula , 2010, J. Comb. Theory, Ser. A.
[28] Igor Pak,et al. Bijecting hidden symmetries for skew staircase shapes , 2021, 2103.09551.
[29] Victor Reiner,et al. Poset edge densities, nearly reduced words, and barely set-valued tableaux , 2016, J. Comb. Theory A.
[30] Peter R. W. McNamara. Factorial Grothendieck Polynomials , 2006, Electron. J. Comb..
[31] Jang Soo Kim,et al. Reverse plane partitions of skew staircase shapes and q-Euler numbers , 2017, J. Comb. Theory, Ser. A.
[32] Greta Panova,et al. Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.
[33] D. Littlewood,et al. The Theory of Group Characters and Matrix Representations of Groups , 2006 .
[34] S. Okada,et al. Skew hook formula for $d$-complete posets via equivariant $K$-theory , 2019, Algebraic Combinatorics.
[35] Alexander Yong,et al. Stable Grothendieck polynomials and K-theoretic factor sequences , 2005 .
[36] Igor Pak,et al. Hook length formula and geometric combinatorics. , 2001 .
[37] Anna Weigandt,et al. Bumpless pipe dreams and alternating sign matrices , 2020, J. Comb. Theory, Ser. A.
[38] Matjaz Konvalinka,et al. A bijective proof of the hook-length formula for skew shapes , 2017, Electron. Notes Discret. Math..
[39] V. Kreiman. Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Grassmannian , 2005 .
[40] Grigori Olshanski,et al. Shifted Schur Functions , 1996 .
[41] A. Yong,et al. Reduced Word Enumeration, Complexity, and Randomization , 2019, Electron. J. Comb..
[42] S. Fomin,et al. Yang-Baxter equation, symmetric functions and Grothendieck polynomials , 1993, hep-th/9306005.
[43] Ezra Miller,et al. Gröbner geometry of vertex decompositions and of flagged tableaux , 2005, math/0502144.
[44] Oliver Pechenik. Minuscule analogues of the plane partition periodicity conjecture of Cameron and Fon-Der-Flaass , 2021 .
[45] A. Yong,et al. EQUIVARIANT $K$ -THEORY OF GRASSMANNIANS , 2015, Forum of Mathematics, Pi.
[46] H. Wilf,et al. A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .
[47] Affine Weyl Groups in K-Theory and Representation Theory , 2003, math/0309207.
[48] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[49] Igor Pak,et al. A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..
[50] Jessica Striker,et al. Resonance in orbits of plane partitions and increasing tableaux , 2015, J. Comb. Theory, Ser. A.
[51] Alexander Yong,et al. A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus , 2007, 0705.2915.
[52] Oliver Pechenik. Cyclic sieving of increasing tableaux and small Schröder paths , 2014, J. Comb. Theory, Ser. A.
[53] A. Buch. Combinatorial K-theory , 2005 .
[54] I. Pak,et al. Asymptotics of principal evaluations of Schubert polynomials for layered permutations , 2018, Proceedings of the American Mathematical Society.
[55] Greta Panova,et al. Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.
[56] H. H. Andersen,et al. Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .
[57] S. Billey,et al. Kostant polynomials and the cohomology ring for G/B. , 1997, Proceedings of the National Academy of Sciences of the United States of America.