Edges, transitions and criticality

In this article, various notions of edges encountered in digital image processing are reviewed in terms of compact representation (or completion). We show that critical exponents defined in Statistical Physics lead to a much more coherent definition of edges, consistent across the scales in acquisitions of natural phenomena, such as high resolution natural images or turbulent acquisitions. Edges belong to the multiscale hierarchy of an underlying dynamics, they are understood from a statistical perspective well adapted to fit the case of natural images. Numerical computation methods for the evaluation of critical exponents in the non-ergodic case are recalled, which apply for the vast majority of natural images. We study the framework of reconstructible systems in a microcanonical formulation, show how it redefines edge completion, and how it can be used to evaluate and assess quantitatively the adequation of edges as candidates for compact representations. We study with particular attention the case of turbulent data, in which edges in the classical sense are particularly challenged. Tests are conducted and evaluated on a standard database for natural images. We test the newly introduced compact representation as an ideal candidate for evaluating turbulent cascading properties of complex images, and we show better reconstruction performance than the classical tested methods. HighlightsClassical edge detection algorithms are reviewed in terms of completion.A new edge detection scheme based on multiscale hierarchical classification.Assessing the consistency of edges across scales.Evaluating edge performance through the framework of reconstructible systems.Comparing the performance with classical edge operators.

[1]  Peter Kovesi,et al.  Image Features from Phase Congruency , 1995 .

[2]  James H. Elder,et al.  Are Edges Incomplete? , 1999, International Journal of Computer Vision.

[3]  Bart M. ter Haar Romeny,et al.  Linear Scale-Space I: Basic Theory , 1994, Geometry-Driven Diffusion in Computer Vision.

[4]  Patrice Abry,et al.  Multifractality Tests Using Bootstrapped Wavelet Leaders , 2007, IEEE Transactions on Signal Processing.

[5]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[7]  Hsun K. Liu,et al.  Two and three dimensional boundary detection , 1977 .

[8]  Salvatore Tabbone,et al.  A multi-scale edge detector , 1993, Pattern Recognit..

[9]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[10]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[11]  Jean-Jacques Fuchs,et al.  A New Approach to Variable Selection Using the TLS Approach , 2007, IEEE Transactions on Signal Processing.

[12]  Hong Jeong,et al.  Adaptive Determination of Filter Scales for Edge Detection , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Antonio Turiel,et al.  The Multifractal Structure of Contrast Changes in Natural Images: From Sharp Edges to Textures , 2000, Neural Computation.

[14]  Stan Z. Li,et al.  Close-Form Solution and Parameter Selection for Convex Minimization-Based Edge-Preserving Smoothing , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Owen Robert Mitchell,et al.  Edge Location to Subpixel Values in Digital Imagery , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Steven W. Zucker,et al.  A Three-Dimensional Edge Operator , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  David H. Marimont,et al.  A probabilistic framework for edge detection and scale selection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[19]  Ellen C. Hildreth,et al.  Implementation Of A Theory Of Edge Detection , 1980 .

[20]  James J. Clark Singularity Theory and Phantom Edges in Scale Space , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Kenji Suzuki,et al.  Neural Edge Enhancer for Supervised Edge Enhancement from Noisy Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Frédéric Truchetet,et al.  A Nonlinear Derivative Scheme Applied to Edge Detection , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[27]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  A. Vulpiani,et al.  Predictability: a way to characterize complexity , 2001, nlin/0101029.

[29]  Tony Lindeberg Edge Detection and Ridge Detection with Automatic Scale Selection , 2004, International Journal of Computer Vision.

[30]  Azriel Rosenfeld,et al.  The Max Roberts Operator is a Hueckel-Type Edge Detector , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Ioannis Pitas,et al.  Edge Detectors Based on Nonlinear Filters , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[34]  Frédéric Truchetet,et al.  Edge enhancement by local deconvolution , 2005, Pattern Recognit..

[35]  D. Thouless Introduction to Phase Transitions and Critical Phenomena , 1972 .

[36]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[38]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[39]  Patrick Bouthemy,et al.  A Maximum Likelihood Framework for Determining Moving Edges , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Rama Chellappa,et al.  What Is the Range of Surface Reconstructions from a Gradient Field? , 2006, ECCV.

[41]  Azriel Rosenfeld,et al.  Multidimensional Edge Detection by Hypersurface Fitting , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Zhou Wang,et al.  Local Phase Coherence and the Perception of Blur , 2003, NIPS.

[43]  Ferdinand van der Heijden,et al.  Edge and Line Feature Extraction Based on Covariance Models , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Dov Dori,et al.  A pattern recognition approach to the detection of complex edges , 1995, Pattern Recognit. Lett..

[47]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[48]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  Ronen Basri,et al.  Multiscale Edge Detection and Fiber Enhancement Using Differences of Oriented Means , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[50]  Xin Wang,et al.  Laplacian Operator-Based Edge Detectors , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Hussein M. Yahia,et al.  Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade , 2010, Pattern Recognit..

[52]  W. Lunscher,et al.  Optimal Edge Detector Design I: Parameter Selection and Noise Effects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Antonio Turiel,et al.  Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study , 2006, J. Comput. Phys..

[54]  Antonio Turiel,et al.  Empirical evidences of a common multifractal signature in economic, biological and physical systems , 2009 .

[55]  William McIlhagga,et al.  The Canny Edge Detector Revisited , 2011, International Journal of Computer Vision.

[56]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[57]  Narendra Ahuja,et al.  A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Wolfram H. H. J. Lunscher,et al.  Optimal Edge Detector Design II: Coefficient Quantization , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Alfred M. Bruckstein,et al.  Regularized Laplacian Zero Crossings as Optimal Edge Integrators , 2003, International Journal of Computer Vision.

[60]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[61]  Oriol Pont,et al.  An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals , 2011, IWCIA.

[62]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[64]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[65]  Antonio Turiel,et al.  Reconstructing images from their most singular fractal manifold , 2002, IEEE Trans. Image Process..

[66]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[67]  Antonio Turiel,et al.  Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I. Singularity analysis , 2008 .

[68]  Annick Lesne Méthodes de renormalisation : phénomènes critiques - chaos - structures fractales , 1996 .

[69]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[71]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[72]  Wolfram H. H. J. Lunscher,et al.  The Asymptotic Optimal Frequency Domain Filter for Edge Detection , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Fred M. Dickey,et al.  An Optimal Frequency Domain Filter for Edge Detection in Digital Pictures , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.