A Multiple-Iterated Trapdoor for Dense Compact Knapsacks

A modification to the multiple-iterated Merkle-Hellman trapdoor is described that permits a knapsack density exceeding the critical density 0.94 of the Lagarias-Odlyzko low-density attack. A high density level also permits fast signature generation. Compaction and common knapsack weights are used to reduce the public-key size. The security of the new trapdoor depends on a simultaneous diophantine approximation problem plus a residue recombination problem.

[1]  Adi Shamir,et al.  A TcS2 = 0 (2n) time/space tradeoff for certain NP-complete problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[2]  Adi Shamir,et al.  A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[3]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[4]  Antoine Joux,et al.  Improving the Critical Density of the Lagarias-Odlyzko Attack Against Subset Sum Problems , 1991, FCT.

[5]  Ernest F. Brickell,et al.  Breaking Iterated Knapsacks , 1985, CRYPTO.

[6]  Jacques Stern,et al.  Cryptanalysis of a Public-Key Cryptosystem Based on Approximations by Rational Numbers , 1991, EUROCRYPT.

[7]  P. S. Henry,et al.  B.S.T.J. BRIEF fast decryption algorithm for the knapsack cryptographic system , 1981, The Bell System Technical Journal.

[8]  Ravi Kannan,et al.  Improved algorithms for integer programming and related lattice problems , 1983, STOC.

[9]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[10]  Chi-Sung Laih,et al.  Linearly shift knapsack public-key cryptosystem , 1989, IEEE J. Sel. Areas Commun..

[11]  A. J. McAuley,et al.  New trapdoor-knapsack public-key cryptosystem , 1985 .

[12]  Adi Shamir,et al.  On the security of the Merkle- Hellman cryptographic scheme (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[13]  Helmut Lagger,et al.  Trapdoors in Knapsack Cryptosystems , 1982, EUROCRYPT.

[14]  Yvo Desmedt,et al.  What Happened with Knapsack Cryptographic Schemes , 1988 .

[15]  Jeffrey C. Lagarias,et al.  Knapsack Public Key Cryptosystems and Diophantine Approximation , 1983, CRYPTO.

[16]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[17]  R. R. Jueneman Electronic document authentication , 1987, IEEE Network.

[18]  Ronald L. Rivest,et al.  A knapsack-type public key cryptosystem based on arithmetic in finite fields , 1988, IEEE Trans. Inf. Theory.

[19]  C. P. Schnorr,et al.  A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..

[20]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[21]  Justin M. Reyneri,et al.  Compact knapsacks are polynomially solvable , 1983, SIGA.

[22]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[23]  Ernest F. Brickell,et al.  Solving Low Density Knapsacks , 1983, CRYPTO.

[24]  Afonso Ferreira A Parallel Time/Hardware Tradeoff T . H = O(2^{n/2}) for the Knapsack Problem , 1991, IEEE Trans. Computers.

[25]  Claus-Peter Schnorr,et al.  An Improved Low-Denisty Subset Sum Algorithm , 1991, EUROCRYPT.

[26]  Adi Shamir The Cryptographic Security of Compact Knapsacks. , 1980 .

[27]  Joos Vandewalle,et al.  Extension of Brickell's Algorithm for Breaking High Density Knapsacks , 1987, EUROCRYPT.

[28]  Alan M. Frieze,et al.  Reconstructing Truncated Integer Variables Satisfying Linear Congruences , 1988, SIAM J. Comput..

[29]  Joos Vandewalle,et al.  The most general cryptographic Knapsack scheme , 1984 .

[30]  Leonard M. Adleman,et al.  On breaking generalized knapsack public key cryptosystems , 1983, STOC.

[31]  John Bloom,et al.  A modular approach to key safeguarding , 1983, IEEE Trans. Inf. Theory.

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Claus-Peter Schnorr,et al.  A More Efficient Algorithm for Lattice Basis Reduction , 1988, J. Algorithms.

[34]  William A. Webb A Public Key Cryptosystem based on complementing Sets , 1992, Cryptologia.

[35]  Donald Ervin Knuth,et al.  The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .

[36]  Andrew M. Odlyzko,et al.  Cryptanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir's fast signature scheme , 1984, IEEE Trans. Inf. Theory.

[37]  Jeffrey C. Lagarias,et al.  Solving low density subset sum problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[38]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[39]  Adi Shamir,et al.  On the cryptocomplexity of knapsack systems , 1979, STOC.

[40]  Donald L. Kreher,et al.  Solving subset sum problems with the L^3 algorithm , 1988 .

[41]  Joos Vandewalle,et al.  A critical analysis of the security of knapsack public-key algorithms , 1984, IEEE Trans. Inf. Theory.

[42]  E. Brickell,et al.  Cryptanalysis: a survey of recent results , 1988, Proc. IEEE.