Sentinel-2's Potential for Sub-Pixel Landscape Feature Detection

Land cover and land use maps derived from satellite remote sensing imagery are critical to support biodiversity and conservation, especially over large areas. With its 10 m to 20 m spatial resolution, Sentinel-2 is a promising sensor for the detection of a variety of landscape features of ecological relevance. However, many components of the ecological network are still smaller than the 10 m pixel, i.e., they are sub-pixel targets that stretch the sensor’s resolution to its limit. This paper proposes a framework to empirically estimate the minimum object size for an accurate detection of a set of structuring landscape foreground/background pairs. The developed method combines a spectral separability analysis and an empirical point spread function estimation for Sentinel-2. The same approach was also applied to Landsat-8 and SPOT-5 (Take 5), which can be considered as similar in terms of spectral definition and spatial resolution, respectively. Results show that Sentinel-2 performs consistently on both aspects. A large number of indices have been tested along with the individual spectral bands and target discrimination was possible in all but one case. Overall, results for Sentinel-2 highlight the critical importance of a good compromise between the spatial and spectral resolution. For instance, the Sentinel-2 roads detection limit was of 3 m and small water bodies are separable with a diameter larger than 11 m. In addition, the analysis of spectral mixtures draws attention to the uneven sensitivity of a variety of spectral indices. The proposed framework could be implemented to assess the fitness for purpose of future sensors within a large range of applications.

[1]  Wenjiang Huang,et al.  [New index for crop canopy fresh biomass estimation]. , 2010, Guang pu xue yu guang pu fen xi = Guang pu.

[2]  Patricia G. Foschi,et al.  DETECTING SUBPIXEL WOODY VEGETATION IN DIGITAL IMAGERY USING TWO ARTIFICIAL INTELLIGENCE APPROACHES , 1997 .

[3]  P. Defourny,et al.  Automated Image-to-Map Discrepancy Detection using Iterative Trimming , 2010 .

[4]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[5]  Pierre Defourny,et al.  Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands , 2014 .

[6]  B. Datt,et al.  Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves , 1999 .

[7]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[8]  Clement Atzberger,et al.  First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe , 2016, Remote. Sens..

[9]  MARK D. DIXON Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation , 2007 .

[10]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[11]  Russell G. Congalton,et al.  Evaluating remotely sensed techniques for mapping riparian vegetation , 2002 .

[12]  Manuel L. Campagnolo,et al.  Estimation of Effective Resolution for Daily MODIS Gridded Surface Reflectance Products , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Cody Anderson,et al.  On-orbit Modulation Transfer Function (MTF) Measurements for IKONOS and QuickBird , 2007 .

[14]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[15]  G. Shao,et al.  On the accuracy of landscape pattern analysis using remote sensing data , 2008, Landscape Ecology.

[16]  J. Clevers The Derivation of a Simplified Reflectance Model for the Estimation of Leaf Area Index , 1988 .

[17]  George Joseph,et al.  How well do we understand Earth observation electro-optical sensor parameters? , 2000 .

[18]  A. Lausch Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability , 2002 .

[19]  J. C. Price,et al.  Spectral band selection for visible-near infrared remote sensing: spectral-spatial resolution tradeoffs , 1997, IEEE Trans. Geosci. Remote. Sens..

[20]  B. Pinty,et al.  GEMI: a non-linear index to monitor global vegetation from satellites , 1992, Vegetatio.

[21]  Gérard Dedieu,et al.  A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images , 2015, Remote. Sens..

[22]  Greg Baxter,et al.  Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation , 2007 .

[23]  Gwendoline Blanchet,et al.  PLEIADES HR IN FLIGHT GEOMETRICAL CALIBRATION : LOCATION AND MAPPING OF THE FOCAL PLANE , 2012 .

[24]  Francine Heisel,et al.  Detection of vegetation stress via a new high resolution fluorescence imaging system , 1996 .

[25]  Alex M. Lechner,et al.  Remote sensing of small and linear features: Quantifying the effects of patch size and length, grid position and detectability on land cover mapping , 2009 .

[26]  Giles M. Foody,et al.  Fuzzy modelling of vegetation from remotely sensed imagery , 1996 .

[27]  H. Oguma,et al.  Subpixel classification of alder trees using multitemporal LANDSAT Thematic Mapper imagery , 2002 .

[28]  Alan A. Ager,et al.  Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland , 2011 .

[29]  K. Bollmann,et al.  Landscape Permeability: From Individual Dispersal to Population Persistence , 2007 .

[30]  Michael E. Schaepman,et al.  Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land , 2012 .

[31]  Peter M. Atkinson,et al.  Sub‐pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super‐resolution pixel‐swapping , 2006 .

[32]  J. Lacaux,et al.  Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal , 2007 .

[33]  Robert A. Davis,et al.  Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis , 2006 .

[34]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[35]  E. Honkavaara,et al.  Targets, methods, and sites for assessing the in-flight spatial resolution of electro-optical data products , 2010 .

[36]  Brian Wenny,et al.  Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor , 2015, Remote. Sens..

[37]  C. François,et al.  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements , 2004 .

[38]  F. Baret,et al.  TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[39]  Xiaodong Li,et al.  Water Bodies' Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band , 2016, Remote. Sens..

[40]  B. Kleinschmit,et al.  Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data , 2012 .

[41]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[42]  Taeyoung Choi,et al.  In-flight characterization of spatial quality using point spread functions , 2004 .

[43]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[44]  Prasanna H. Gowda,et al.  Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices , 1997 .

[45]  Julien Radoux,et al.  A quantitative assessment of boundaries in automated forest stand delineation using very high resolution imagery , 2007 .

[46]  Arthur S. Lieberman,et al.  Landscape Ecology , 1994, Springer New York.

[47]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[48]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[49]  Helmi Zulhaidi Mohd Shafri,et al.  A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery , 2015 .

[50]  B. Wardlow,et al.  Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains , 2008 .

[51]  O. Mutanga,et al.  Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments , 2015 .

[52]  Luis Alonso,et al.  Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content , 2011, Sensors.

[53]  Lawrence Ong,et al.  Landsat-8 Operational Land Imager (OLI) Radiometric Performance On-Orbit , 2015, Remote. Sens..

[54]  H. Nagendra,et al.  People within parks—forest villages, land-cover change and landscape fragmentation in the Tadoba Andhari Tiger Reserve, India , 2006 .

[55]  Jean Paul Metzger,et al.  Landscape ecology: perspectives based on the 2007 IALE world congress , 2008, Landscape Ecology.

[56]  R. Wrigley,et al.  Landsat Thematic Mapper image-derived MTF , 1985 .

[57]  Le Wang,et al.  Characterizing spatial patterns of invasive species using sub-pixel classifications , 2011 .

[58]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[59]  Alexandre Boucher,et al.  Downscaling of satellite remote sensing data: Application to land cover mapping , 2007 .

[60]  Clayton K. Nielsen,et al.  Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods , 2008 .

[61]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[62]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[63]  F. J. A. López,et al.  Restoring SPOT images using PSF-derived deconvolution filters , 2002 .

[64]  P. F. Fisher,et al.  Landscape metrics with ecotones: pattern under uncertainty , 2004, Landscape Ecology.

[65]  Kenton Lee,et al.  Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance , 2014, Remote. Sens..

[66]  Marc Antrop,et al.  Reflecting upon 25 years of landscape ecology , 2007, Landscape Ecology.

[67]  Clayton C. Kingdon,et al.  Spatial pattern analysis for monitoring protected areas , 2009 .

[68]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[69]  Pierre Soille,et al.  Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas , 2016, Remote. Sens..

[70]  J. R. Jensen,et al.  Remote Sensing of Urban/Suburban Infrastructure and Socio‐Economic Attributes , 2011 .

[71]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[72]  K. Moffett,et al.  Remote Sens , 2015 .

[73]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[74]  F. J. Gallego Remote sensing and land cover area estimation , 2004 .

[75]  Kurt H. Riitters,et al.  Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition , 1997 .

[76]  Sandrina P. Barbosa,et al.  Radiation propagation time broadening of the instrument response function in time-resolved fluorescence spectroscopy , 2006 .

[77]  B. Worton Using Monte Carlo simulation to evaluate kernel-based home range estimators , 1995 .

[78]  Edward J. Knight,et al.  Landsat-8 Operational Land Imager Design, Characterization and Performance , 2014, Remote. Sens..

[79]  John R. Miller,et al.  Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery , 1999 .