Anisotropy oxidation of textured ZrB2–MoSi2 ceramics

[1]  J. Vleugels,et al.  In situ platelet-toughened TiB2–SiC composites prepared by reactive pulsed electric current sintering , 2011 .

[2]  J. Zou,et al.  Textured and platelet-reinforced ZrB 2 -based ultra-high-temperature ceramics , 2011 .

[3]  Guo‐Jun Zhang,et al.  Oxidation resistance and strength retention of ZrB2–SiC ceramics , 2010 .

[4]  H. Kleebe,et al.  Transmission electron microscopy on Zr- and Hf-borides with MoSi_2 addition: Densification mechanisms , 2010 .

[5]  J. Vleugels,et al.  Pulsed electric current, in situ synthesis and sintering of textured TiB2 ceramics , 2010 .

[6]  D. Sciti,et al.  Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite , 2009 .

[7]  Y. Sakka,et al.  Textured HfB2-based ultrahigh-temperature ceramics with anisotropic oxidation behavior , 2009 .

[8]  Y. Sakka,et al.  Highly textured ZrB2-based ultrahigh temperature ceramics via strong magnetic field alignment , 2009 .

[9]  F. Monteverde The addition of SiC particles into a MoSi2-doped ZrB2 matrix: Effects on densification, microstructure and thermo-physical properties , 2009 .

[10]  A. K. Suri,et al.  Oxidation Kinetics and Mechanisms of Hot-Pressed TiB2–MoSi2 Composites , 2008 .

[11]  X. Zhu,et al.  Textured silicon nitride: processing and anisotropic properties , 2008, Science and technology of advanced materials.

[12]  D. Sciti,et al.  Effects of MoSi2 additions on the properties of Hf-and Zr-B2 composites produced by pressureless sintering , 2007 .

[13]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[14]  T. Grande,et al.  Preferential Grain Orientation in Hot Pressed TiB2 , 2007 .

[15]  Mark M. Opeka,et al.  A Model for the Oxidation of ZrB2, HfB2 and TiB2 (Postprint) , 2007 .

[16]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[17]  D. Sciti,et al.  Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques , 2006 .

[18]  D. Sciti,et al.  Properties of a Pressureless‐Sintered ZrB2–MoSi2 Ceramic Composite , 2006 .

[19]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .

[20]  D. Sciti,et al.  Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2–MoSi2 ceramic , 2005 .

[21]  D. Sciti,et al.  Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite , 2005 .

[22]  T. Ohji,et al.  Strengthening and Toughening of Silicon Nitride by Superplastic Deformation , 2005 .

[23]  Donald T. Ellerby,et al.  Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .

[24]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[25]  T. Ohji,et al.  Superplastic Sinter-Forging of Silicon Nitride with Anisotropic Microstructure Formation , 1999 .

[26]  I. Chen,et al.  A tough SiAlON ceramic based on α-Si3N4 with a whisker-like microstructure , 1997, Nature.

[27]  Kiyoshi Hirao,et al.  Microstructure Control of Silicon Nitride by Seeding with Rodlike β‐Silicon Nitride Particles , 1994 .

[28]  E. Lavernia,et al.  Processing of molybdenum disilicide , 1994, Journal of Materials Science.