Accelerated multicontrast volumetric imaging with isotropic resolution for improved peri‐infarct characterization using parallel imaging, low‐rank and spatially varying edge‐preserving sparse modeling

To achieve consistent effectiveness in reconstruction of fine image features for cases of varying contrast‐to‐noise ratio (CNR) to facilitate translating accelerated multicontrast volumetric imaging with isotropic resolution toward clinical utility in peri‐infarct characterization.

[1]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[2]  Li Zhang,et al.  High-Resolution 3-D T${{\bf _1}^{\bf *}}$-Mapping and Quantitative Image Analysis of GRAY ZONE in Chronic Fibrosis , 2014, IEEE Transactions on Biomedical Engineering.

[3]  Michael Lustig,et al.  ESPIRIT-Based Coil Compression for Cartesian Sampling , 2012 .

[4]  F. Sebert,et al.  SparseSENSE: Randomly-Sampled Parallel Imaging using Compressed Sensing , 2007 .

[5]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[6]  Peter Kellman,et al.  Late Gadolinium-Enhancement Cardiac Magnetic Resonance Identifies Postinfarction Myocardial Fibrosis and the Border Zone at the Near Cellular Level in Ex Vivo Rat Heart , 2010, Circulation. Cardiovascular imaging.

[7]  D. Callans,et al.  Risk Stratification for Ventricular Arrhythmias and Scd Role of Cardiac Magnetic Resonance Imaging in the Management and Treatment of Ventricular Tachycardia in Patients with Structural Heart Disease , 2022 .

[8]  Yingli Lu,et al.  Multi-contrast late enhancement CMR determined gray zone and papillary muscle involvement predict appropriate ICD therapy in patients with ischemic heart disease , 2013, Journal of Cardiovascular Magnetic Resonance.

[9]  Graham A Wright,et al.  Multicontrast late gadolinium enhancement imaging enables viability and wall motion assessment in a single acquisition with reduced scan times , 2009, Journal of magnetic resonance imaging : JMRI.

[10]  G. Wright,et al.  Magnetic resonance estimates of the extent and heterogeneity of scar tissue in ICD patients with ischemic cardiomyopathy predict ventricular arrhythmia. , 2015, Heart rhythm.

[11]  Mihaela Pop,et al.  Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge‐preserving constraints for high‐resolution MR characterization of myocardial infarction , 2017, Magnetic resonance in medicine.

[12]  Alexander Dick,et al.  Reproducible Classification of Infarct Heterogeneity Using Fuzzy Clustering on Multicontrast Delayed Enhancement Magnetic Resonance Images , 2009, IEEE Transactions on Medical Imaging.

[13]  Antonio Berruezo,et al.  3D delayed-enhanced magnetic resonance sequences improve conducting channel delineation prior to ventricular tachycardia ablation. , 2015, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[14]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[15]  Katherine C. Wu,et al.  Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction , 2007, Circulation.

[16]  Henry R. Halperin,et al.  Magnetic Resonance–Based Anatomical Analysis of Scar-Related Ventricular Tachycardia: Implications for Catheter Ablation , 2007, Circulation research.

[17]  Mehmet Akçakaya,et al.  Accelerated late gadolinium enhancement cardiac MR imaging with isotropic spatial resolution using compressed sensing: initial experience. , 2012, Radiology.

[18]  Michela Masè,et al.  Myocardial Fibrosis Assessment by LGE Is a Powerful Predictor of Ventricular Tachyarrhythmias in Ischemic and Nonischemic LV Dysfunction: A Meta-Analysis. , 2016, JACC. Cardiovascular imaging.

[19]  G A Wright,et al.  Inversion‐recovery‐prepared SSFP for cardiac‐phase‐resolved delayed‐enhancement MRI , 2007, Magnetic resonance in medicine.

[20]  Katja Zeppenfeld,et al.  Infarct Tissue Heterogeneity Assessed With Contrast-Enhanced MRI Predicts Spontaneous Ventricular Arrhythmia in Patients With Ischemic Cardiomyopathy and Implantable Cardioverter-Defibrillator , 2009, Circulation. Cardiovascular imaging.

[21]  M. Lustig,et al.  SPIRiT: Iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space , 2010, Magnetic resonance in medicine.

[22]  Mihaela Pop,et al.  Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods , 2013, Physics in medicine and biology.

[23]  K. Keutzer,et al.  Improved Time-Resolved, 3D Phase Contrast Imaging through Variable Poisson Sampling and Partial Respiratory Triggering , 2011 .

[24]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[25]  Bernard Y Ho,et al.  A fast navigator‐gated 3D sequence for delayed enhancement MRI of the myocardium: Comparison with breathhold 2D imaging , 2008, Journal of magnetic resonance imaging : JMRI.

[26]  Dwight G Nishimura,et al.  Rapid single‐breath‐hold 3D late gadolinium enhancement cardiac MRI using a stack‐of‐spirals acquisition , 2014, Journal of magnetic resonance imaging : JMRI.

[27]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[28]  Dong Liang,et al.  k-t CSPI: A dynamic MRI reconstruction framework for combining compressed sensing and parallel imaging , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[29]  G. Wright,et al.  Papillary muscle involvement in myocardial infarction: Initial results using multicontrast late‐enhancement MRI , 2011, Journal of magnetic resonance imaging : JMRI.

[30]  Mihaela Pop,et al.  High-Resolution 3-D T1*-Mapping and Quantitative Image Analysis of GRAY ZONE in Chronic Fibrosis , 2014, IEEE Trans. Biomed. Eng..

[31]  W. Manning,et al.  3D late gadolinium enhancement in a single prolonged breath‐hold using supplemental oxygenation and hyperventilation , 2014, Magnetic resonance in medicine.

[33]  E. McVeigh,et al.  Signal-to-noise measurements in magnitude images from NMR phased arrays , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[34]  Sebastian Kozerke,et al.  Acute, subacute, and chronic myocardial infarction: quantitative comparison of 2D and 3D late gadolinium enhancement MR imaging. , 2011, Radiology.

[35]  Elena Arbelo,et al.  Noninvasive identification of ventricular tachycardia-related conducting channels using contrast-enhanced magnetic resonance imaging in patients with chronic myocardial infarction: comparison of signal intensity scar mapping and endocardial voltage mapping. , 2011, Journal of the American College of Cardiology.

[36]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[37]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[38]  Michael Lustig,et al.  Coil compression for accelerated imaging with Cartesian sampling , 2013, Magnetic resonance in medicine.

[39]  O. Simonetti,et al.  The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. , 2000, The New England journal of medicine.

[40]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[41]  Reza Nezafat,et al.  Left ventricular infarct size, peri‐infarct zone, and papillary scar measurements: A comparison of high‐resolution 3D and conventional 2D late gadolinium enhancement cardiac MR , 2009, Journal of magnetic resonance imaging : JMRI.

[42]  O. Simonetti,et al.  Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. , 1999, Circulation.

[43]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[44]  Oscar Camara,et al.  Three-Dimensional Architecture of Scar and Conducting Channels Based on High Resolution ce-CMR: Insights for Ventricular Tachycardia Ablation , 2013, Circulation. Arrhythmia and electrophysiology.

[45]  J. Pauly,et al.  Accelerating parameter mapping with a locally low rank constraint , 2015, Magnetic resonance in medicine.