An open-source tool for longitudinal whole-brain and white matter lesion segmentation

[1]  F. Prados,et al.  Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review , 2022, Neuroradiology.

[2]  M. Battaglini,et al.  Association of Brain Atrophy With Disease Progression Independent of Relapse Activity in Patients With Relapsing Multiple Sclerosis. , 2022, JAMA neurology.

[3]  M. Battaglini,et al.  Evolution from a first clinical demyelinating event to multiple sclerosis in the REFLEX trial: Regional susceptibility in the conversion to multiple sclerosis at disease onset and its amenability to subcutaneous interferon beta‐1a , 2022, European journal of neurology.

[4]  M. Filippi,et al.  Slowly Expanding Lesions Predict 9-Year Multiple Sclerosis Disease Progression , 2022, Neurology: Neuroimmunology & Neuroinflammation.

[5]  Lara M. Wierenga,et al.  Inter-individual variability in structural brain development from late childhood to young adulthood , 2021, NeuroImage.

[6]  Marieke G. N. Bos,et al.  Individual variability in structural brain development from late childhood to young adulthood , 2021, bioRxiv.

[7]  S. Graham,et al.  Expansion of chronic lesions is linked to disease progression in relapsing–remitting multiple sclerosis patients , 2020, Multiple sclerosis.

[8]  Adrian V. Dalca,et al.  Reliability and sensitivity of two whole-brain segmentation approaches included in FreeSurfer – ASEG and SAMSEG , 2020, NeuroImage.

[9]  Nils Gessert,et al.  Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks , 2020, NeuroImage: Clinical.

[10]  Douglas N. Greve,et al.  A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis , 2020, MLCN/RNO-AI@MICCAI.

[11]  Koenraad Van Leemput,et al.  A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis , 2020, NeuroImage.

[12]  M. Bondi,et al.  Patterns of longitudinal cortical atrophy over 3 years in empirically derived MCI subtypes , 2020, Neurology.

[13]  Ziga Spiclin,et al.  Spatio-temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation , 2020, BrainLes@MICCAI.

[14]  Tal Arbel,et al.  CNN Detection of New and Enlarging Multiple Sclerosis Lesions from Longitudinal Mri Using Subtraction Images , 2020, 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).

[15]  G. Frisoni,et al.  Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. , 2020, The Cochrane database of systematic reviews.

[16]  Christian Gaser,et al.  Prognostic value of white matter lesion shrinking in early multiple sclerosis: An intuitive or naïve notion? , 2019, Brain and behavior.

[17]  Sergiu Groppa,et al.  Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging , 2019, NeuroImage: Clinical.

[18]  Richard McKinley,et al.  Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence , 2019, NeuroImage: Clinical.

[19]  Ravi S. Menon,et al.  Imaging outcome measures of neuroprotection and repair in MS: A consensus statement from NAIMS , 2019, Neurology.

[20]  D. Arnold,et al.  Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions , 2018, Multiple sclerosis.

[21]  G. Halliday,et al.  Pathology and hippocampal atrophy in Alzheimer's disease , 2017, The Lancet Neurology.

[22]  Nicholas C. Firth,et al.  Progression of regional grey matter atrophy in multiple sclerosis , 2017, bioRxiv.

[23]  Peter A. Calabresi,et al.  Longitudinal multiple sclerosis lesion segmentation data resource , 2017, Data in brief.

[24]  D. Reich,et al.  Slowly eroding lesions in multiple sclerosis , 2017, Multiple sclerosis.

[25]  Koenraad Van Leemput,et al.  Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling , 2016, NeuroImage.

[26]  Anisha Keshavan,et al.  Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis , 2016, NeuroImage.

[27]  Koenraad Van Leemput,et al.  Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases , 2016, NeuroImage.

[28]  Hayit Greenspan,et al.  Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks , 2016, LABELS/DLMIA@MICCAI.

[29]  Pierre Grammond,et al.  Defining secondary progressive multiple sclerosis. , 2016, Brain : a journal of neurology.

[30]  D. Louis Collins,et al.  Spatio-Temporal Regularization for Longitudinal Registration to Subject-Specific 3d Template , 2015, PloS one.

[31]  Martin Styner,et al.  A joint framework for 4D segmentation and estimation of smooth temporal appearance changes , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[32]  Marco Battaglini,et al.  Automated identification of brain new lesions in multiple sclerosis using subtraction images , 2014, Journal of magnetic resonance imaging : JMRI.

[33]  Robert Zivadinov,et al.  Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model , 2014, NeuroImage.

[34]  Xavier Lladó,et al.  A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies , 2014, Neuroradiology.

[35]  D. Louis Collins,et al.  A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood , 2013, NeuroImage.

[36]  Vladimir S Fonov,et al.  Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis , 2013, NeuroImage: Clinical.

[37]  N. Makris,et al.  Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds. , 2013, Cerebral cortex.

[38]  Dinggang Shen,et al.  4D Segmentation of Brain MR Images with Constrained Cortical Thickness Variation , 2013, PloS one.

[39]  D. Louis Collins,et al.  Temporally Consistent Probabilistic Detection of New Multiple Sclerosis Lesions in Brain MRI , 2013, IEEE Transactions on Medical Imaging.

[40]  Sébastien Ourselin,et al.  MIRIAD—Public release of a multiple time point Alzheimer's MR imaging dataset , 2013, NeuroImage.

[41]  George Richardson,et al.  Brain development and aging: Overlapping and unique patterns of change , 2013, NeuroImage.

[42]  C M Crainiceanu,et al.  Automatic Lesion Incidence Estimation and Detection in Multiple Sclerosis Using Multisequence Longitudinal MRI , 2013, American Journal of Neuroradiology.

[43]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[44]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[45]  Guido Gerig,et al.  Building spatiotemporal anatomical models using joint 4-D segmentation, registration, and subject-specific atlas estimation , 2012, 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis.

[46]  Dinggang Shen,et al.  Accurate and Consistent 4D Segmentation of Serial Infant Brain MR Images , 2011, MBIA.

[47]  Anders M. Dale,et al.  Nonlinear registration of longitudinal images and measurement of change in regions of interest , 2011, Medical Image Anal..

[48]  Bruce Fischl,et al.  Avoiding asymmetry-induced bias in longitudinal image processing , 2011, NeuroImage.

[49]  Daniel S Reich,et al.  Evolution of the blood–brain barrier in newly forming multiple sclerosis lesions , 2011, Annals of neurology.

[50]  Robert Fox,et al.  CLADA: Cortical longitudinal atrophy detection algorithm , 2011, NeuroImage.

[51]  John G. Csernansky,et al.  Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults , 2010, Journal of Cognitive Neuroscience.

[52]  Dinggang Shen,et al.  Spatial-Temporal Constraint for Segmentation of Serial Infant Brain MR Images , 2010, MIAR.

[53]  Jyrki Lötjönen,et al.  Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI , 2010, NeuroImage.

[54]  Dinggang Shen,et al.  Neonatal brain image segmentation in longitudinal MRI studies , 2010, NeuroImage.

[55]  Koen Van Leemput,et al.  Encoding Probabilistic Brain Atlases Using Bayesian Inference , 2009, IEEE Transactions on Medical Imaging.

[56]  B. Ginneken,et al.  3D Segmentation in the Clinic: A Grand Challenge , 2007 .

[57]  R. Rudick,et al.  Gray matter atrophy in multiple sclerosis: A longitudinal study , 2008, Annals of neurology.

[58]  Brian B. Avants,et al.  Spatiotemporal Normalization for Longitudinal Analysis of Gray Matter Atrophy in Frontotemporal Dementia , 2007, MICCAI.

[59]  Brain Development Cooperative Group,et al.  The NIH MRI study of normal brain development (Objective-2): Newborns, infants, toddlers, and preschoolers , 2007, NeuroImage.

[60]  Alan J. Thompson,et al.  Localization of grey matter atrophy in early RRMS , 2006, Journal of Neurology.

[61]  Dinggang Shen,et al.  CLASSIC: Consistent Longitudinal Alignment and Segmentation for Serial Image Computing , 2006, NeuroImage.

[62]  Alan C. Evans,et al.  The NIH MRI study of normal brain development , 2006, NeuroImage.

[63]  Dinggang Shen,et al.  CLASSIC: Consistent Longitudinal Alignment and Segmentation for Serial Image Computing , 2005, IPMI.

[64]  Arun K. Sood,et al.  4-D lesion detection using expectation-maximization and hidden Markov model , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[65]  Fabrice Heitz,et al.  Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution , 2003, NeuroImage.

[66]  Nick C Fox,et al.  A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. , 2003, Archives of neurology.

[67]  Stephen M. Smith,et al.  Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis , 2002, NeuroImage.

[68]  N. Schuff,et al.  Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease , 2001, Journal of neurology, neurosurgery, and psychiatry.

[69]  Guido Gerig,et al.  Spatio-temporal Segmentation of Active Multiple Sclerosis Lesions in Serial MRI Data , 2001, IPMI.

[70]  P. Matthews,et al.  Normalized Accurate Measurement of Longitudinal Brain Change , 2001, Journal of computer assisted tomography.

[71]  Guido Gerig,et al.  Exploring the discrimination power of the time domain for segmentation and characterization of active lesions in serial MR data , 2000, Medical Image Anal..

[72]  Karl J. Friston,et al.  Image registration using a symmetric prior—in three dimensions , 1999, Human brain mapping.

[73]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[74]  Alan C. Evans,et al.  Brain development during childhood and adolescence: a longitudinal MRI study , 1999, Nature Neuroscience.

[75]  Hervé Delingette,et al.  Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis , 1999, IPMI.

[76]  Jean-Philippe Thirion,et al.  Deformation Analysis to Detect and Quantify Active Lesions in 3D Medical Image Sequences , 1999, IEEE Trans. Medical Imaging.

[77]  Louis Lemieux,et al.  The detection and significance of subtle changes in mixed-signal brain lesions by serial MRI scan matching and spatial normalization , 1998, Medical Image Anal..

[78]  H. Soininen,et al.  MRI of the Hippocampus in Alzheimer’s Disease: Sensitivity, Specificity, and Analysis of the Incorrectly Classified Subjects , 1998, Neurobiology of Aging.

[79]  Nick C. Fox,et al.  The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI , 1997, IEEE Transactions on Medical Imaging.

[80]  Nick C Fox,et al.  Presymptomatic hippocampal atrophy in Alzheimer's disease. A longitudinal MRI study. , 1996, Brain : a journal of neurology.

[81]  J. Hajnal,et al.  Detection of Subtle Brain Changes Using Subvoxel Registration and Subtraction of Serial MR Images , 1995, Journal of computer assisted tomography.

[82]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[83]  Ron Kikinis,et al.  4D Connected component labelling applied to quantitative analysis of MS lesion temporal development , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[84]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[85]  Dinggang Shen,et al.  Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks , 2021, MICCAI.

[86]  Daniel L Gillen,et al.  Longitudinal Mapping of Cortical Thickness Measurements: An Alzheimer's Disease Neuroimaging Initiative-Based Evaluation Study. , 2019, Journal of Alzheimer's disease : JAD.

[87]  Olivier Commowick,et al.  MSSEG Challenge Proceedings: Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure , 2016, MICCAI 2016.

[88]  Alan C. Evans,et al.  Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development. , 2012, Cerebral cortex.

[89]  Dinggang Shen,et al.  Consistent 4 D Cortical Thickness Measurement for Longitudinal Neuroimaging Study , 2011 .

[90]  Koen Van Leemput,et al.  Encoding Probabilistic Brain Atlases , 2009 .

[91]  Daniel Rueckert,et al.  Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II , 2017, Lecture Notes in Computer Science.

[92]  I. Pirko,et al.  Neuroimaging of demyelination and remyelination models. , 2008, Current topics in microbiology and immunology.

[93]  Moses Rodriguez Advances in multiple Sclerosis and Experimental Demyelinating Diseases , 2008 .

[94]  J. Thirion,et al.  Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences , 1999, IEEE Transactions on Medical Imaging.