The relationship between peptide structure and antibacterial activity

[1]  P. Axelsen,et al.  Transcriptional Profile of the Escherichia coli Response to the Antimicrobial Insect Peptide Cecropin A , 2003, Antimicrobial Agents and Chemotherapy.

[2]  A. Laederach,et al.  Solution and micelle-bound structures of tachyplesin I and its active aromatic linear derivatives. , 2002, Biochemistry.

[3]  H. Vogel,et al.  The Solution Structure of Human Hepcidin, a Peptide Hormone with Antimicrobial Activity That Is Involved in Iron Uptake and Hereditary Hemochromatosis* 210 , 2002, The Journal of Biological Chemistry.

[4]  F. Almeida,et al.  NMR Structure of PW2 Bound to SDS Micelles , 2002, The Journal of Biological Chemistry.

[5]  M. Demura,et al.  Structure of the Antimicrobial Peptide Tachystatin A* , 2002, The Journal of Biological Chemistry.

[6]  J. Ishibashi,et al.  Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori , 2002, FEBS letters.

[7]  K. Matsuzaki,et al.  Specific interactions of the antimicrobial peptide cyclic beta-sheet tachyplesin I with lipopolysaccharides. , 2002, Biochimica et biophysica acta.

[8]  H. Vogel,et al.  The Solution Structures of the Human β-Defensins Lead to a Better Understanding of the Potent Bactericidal Activity of HBD3 against Staphylococcus aureus * , 2002, The Journal of Biological Chemistry.

[9]  A. Waring,et al.  Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. , 2002, Protein engineering.

[10]  R. Hancock,et al.  Sublethal Concentrations of Pleurocidin-Derived Antimicrobial Peptides Inhibit Macromolecular Synthesis in Escherichia coli , 2002, Antimicrobial Agents and Chemotherapy.

[11]  A. D. Robertson,et al.  SMAP-29 has two LPS-binding sites and a central hinge. , 2002, European journal of biochemistry.

[12]  S. Daffre,et al.  The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. , 2002, European journal of biochemistry.

[13]  M. Almeida,et al.  NMR Solution Structure of Pisum sativum defensin 1 (Psd1) , 2002 .

[14]  M. Colmenares Dendritic-cell specific ICAM-3 grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human dendritic cells, is a receptor for Leishmania amastigotes , 2002 .

[15]  Robert E W Hancock,et al.  Role of membranes in the activities of antimicrobial cationic peptides. , 2002, FEMS microbiology letters.

[16]  H. Sticht,et al.  Structure determination of human and murine β‐defensins reveals structural conservation in the absence of significant sequence similarity , 2001, Protein science : a publication of the Protein Society.

[17]  D. Hoover,et al.  The structure of human beta-defensin-1: new insights into structural properties of beta-defensins. , 2001, The Journal of biological chemistry.

[18]  P. Bulet,et al.  Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. , 2001, Biochemistry.

[19]  R. Hancock,et al.  Interaction of Cationic Antimicrobial Peptides with Model Membranes* , 2001, The Journal of Biological Chemistry.

[20]  Z. Hu,et al.  Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana. , 2001, Biochemistry.

[21]  P. Cullis,et al.  On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids , 2001, Gene Therapy.

[22]  Michael Bienert,et al.  Optimization of the antimicrobial activity of magainin peptides by modification of charge , 2001, FEBS letters.

[23]  R. Hancock,et al.  Structure and Mechanism of Action of an Indolicidin Peptide Derivative with Improved Activity against Gram-positive Bacteria* , 2001, The Journal of Biological Chemistry.

[24]  T. Tachi,et al.  Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. , 2001, Biopolymers.

[25]  D. Craik,et al.  Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes. , 2001, Biochemistry.

[26]  S. Lovas,et al.  The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. , 2001, Biochemistry.

[27]  S. Futaki,et al.  Arginine-rich Peptides , 2001, The Journal of Biological Chemistry.

[28]  R. Hancock,et al.  Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. , 2000, Biochemistry.

[29]  D. Craik,et al.  Three-dimensional structure of RK-1: a novel alpha-defensin peptide. , 2000, Biochemistry.

[30]  K. Hahm,et al.  Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. , 2000, Biochemistry.

[31]  R. Hancock,et al.  Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[32]  C. B. Park,et al.  Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Gelmon,et al.  In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. , 2000, Anti-cancer drug design.

[34]  G. Mitta,et al.  Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). , 2000, Biochemistry.

[35]  H. Vogel,et al.  Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. , 1999, Biochemistry.

[36]  H. Vogel,et al.  Diversity of antimicrobial peptides and their mechanisms of action. , 1999, Biochimica et biophysica acta.

[37]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[38]  W. Vranken,et al.  The three‐dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance , 1999, Proteins.

[39]  J. Vederas,et al.  Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. , 1999, Biochemistry.

[40]  F. Barchiesi,et al.  Antimicrobial activity of polycationic peptides , 1999, Peptides.

[41]  P. Bulet,et al.  Androctonin, a novel antimicrobial peptide from scorpion Androctonus australis: solution structure and molecular dynamics simulations in the presence of a lipid monolayer. , 1999, Journal of biomolecular structure & dynamics.

[42]  R. Hancock,et al.  Salt-Resistant Alpha-Helical Cationic Antimicrobial Peptides , 1999, Antimicrobial Agents and Chemotherapy.

[43]  R. Benz,et al.  Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. , 1999, Biochemistry.

[44]  E Maier,et al.  Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. , 1999, Biochemistry.

[45]  K. Hahm,et al.  NMR structural characterization of cecropin A(1-8) - magainin 2(1-12) and cecropin A (1-8) - melittin (1-12) hybrid peptides. , 1999, The journal of peptide research : official journal of the American Peptide Society.

[46]  K. Gustafson,et al.  Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity. , 1999, Journal of molecular biology.

[47]  A. Rao,et al.  Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. , 1999, Archives of biochemistry and biophysics.

[48]  G. Scalise,et al.  In Vitro Activities of Membrane-Active Peptides against Gram-Positive and Gram-Negative Aerobic Bacteria , 1998, Antimicrobial Agents and Chemotherapy.

[49]  K. Matsuzaki,et al.  Magainins as paradigm for the mode of action of pore forming polypeptides. , 1998, Biochimica et biophysica acta.

[50]  M. Ptak,et al.  Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. , 1998, European journal of biochemistry.

[51]  C. B. Park,et al.  Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. , 1998, Biochemical and biophysical research communications.

[52]  H. Vogel,et al.  Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. , 1998, Biochemistry.

[53]  C. Subbalakshmi,et al.  Mechanism of antimicrobial action of indolicidin. , 1998, FEMS microbiology letters.

[54]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[55]  H. Sahl,et al.  The Lantibiotic Mersacidin Inhibits Peptidoglycan Synthesis by Targeting Lipid II , 1998, Antimicrobial Agents and Chemotherapy.

[56]  Y. Shai,et al.  Mode of action of linear amphipathic α-helical antimicrobial peptides , 1998 .

[57]  Y. Shai,et al.  Mode of action of linear amphipathic alpha-helical antimicrobial peptides. , 1998, Biopolymers.

[58]  H. Vogel,et al.  Structure-function relationships of antimicrobial peptides. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[59]  J. Vederas,et al.  Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. , 1997, Biochemistry.

[60]  M. Ptak,et al.  Solution structure of drosomycin, the first inducible antifungal protein from insects , 1997, Protein science : a publication of the Protein Society.

[61]  Y. Kirino,et al.  Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. , 1997, Biochemistry.

[62]  N. Fujii,et al.  Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. , 1997, Biochimica et biophysica acta.

[63]  J. Gesell,et al.  Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution , 1997, Journal of biomolecular NMR.

[64]  W. Guba,et al.  3D structure of ramoplanin: a potent inhibitor of bacterial cell wall synthesis. , 1996, Biochemistry.

[65]  R. Hancock,et al.  Mode of Action of the Antimicrobial Peptide Indolicidin* , 1996, The Journal of Biological Chemistry.

[66]  D. Eisenberg,et al.  Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. , 1996, Chemistry & biology.

[67]  J. Sun,et al.  A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein (*) , 1996, The Journal of Biological Chemistry.

[68]  L. Wyns,et al.  H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. , 1996, Journal of molecular biology.

[69]  J P Roussel,et al.  Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[71]  A. Rietveld,et al.  Non‐bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. , 1995, The EMBO journal.

[72]  A. Pardi,et al.  Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. , 1995, Biochemistry.

[73]  K. Miyajima,et al.  Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. , 1995, Biochemistry.

[74]  N. Fujii,et al.  Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. , 1995, Biochemistry.

[75]  M Ptak,et al.  Refined three-dimensional solution structure of insect defensin A. , 1995, Structure.

[76]  B. Şener,et al.  Bidesmosidic triterpenoidal saponins from the roots of Symphytum officinale. , 1995, Planta medica.

[77]  F. Gillin,et al.  Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides , 1994, Infection and immunity.

[78]  M. Klagsbrun,et al.  Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[79]  H. Westerhoff,et al.  Magainin oligomers reversibly dissipate delta microH+ in cytochrome oxidase liposomes. , 1994, Biochemistry.

[80]  A. Otaka,et al.  Role of disulfide linkages in tachyplesin-lipid interactions. , 1993, Biochemistry.

[81]  M. Zasloff,et al.  Anticancer efficacy of Magainin2 and analogue peptides. , 1993, Cancer research.

[82]  H. Tamamura,et al.  Antimicrobial activity and conformation of tachyplesin I and its analogs. , 1993, Chemical & pharmaceutical bulletin.

[83]  E. Méndez,et al.  Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. , 1993, Biochemistry.

[84]  Y. Shai,et al.  Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. , 1992, Biochemistry.

[85]  T Ueda,et al.  A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin II). , 1992, Biochemical and biophysical research communications.

[86]  Y. Sugiura,et al.  Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. , 1992, Biochemistry.

[87]  Wayne L. Smith,et al.  Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. , 1992, The Journal of biological chemistry.

[88]  D. Eisenberg,et al.  Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. , 1991, Science.

[89]  N. Fujii,et al.  Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. , 1991, Biochimica et biophysica acta.

[90]  S. Iwanaga,et al.  Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes. , 1991, Chemotherapy.

[91]  S. Iwanaga,et al.  Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro. , 1991, Chemotherapy.

[92]  I. Shalit,et al.  All‐D‐magainin: chirality, antimicrobial activity and proteolytic resistance , 1990, FEBS letters.

[93]  T. Yoneya,et al.  Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). NMR determination of the beta-sheet structure. , 1990, The Journal of biological chemistry.

[94]  D. Kohda,et al.  1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin , 1990, FEBS letters.

[95]  R. B. Merrifield,et al.  All-D amino acid-containing channel-forming antibiotic peptides. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[96]  T. Ganz,et al.  Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. , 1989, The Journal of clinical investigation.

[97]  H. Westerhoff,et al.  Magainin 2 amide and analogues Antimicrobial activity, membrane depolarization and susceptibility to proteolysis , 1989, FEBS letters.

[98]  N. Fujii,et al.  Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. , 1989, Biochimica et biophysica acta.

[99]  T. Miyata,et al.  Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. , 1988, The Journal of biological chemistry.

[100]  M. Zasloff,et al.  Antimicrobial activity of synthetic magainin peptides and several analogues. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Takanori Nakamura,et al.  Tachyplesin, a Class of Antimicrobial Peptide from the Hemocytes of the Horseshoe Crab (Tach ypleus tridentatus) , 1988 .

[102]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[103]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor , 1987 .

[104]  H Lecar,et al.  Electrically gated ionic channels in lipid bilayers , 1977, Quarterly Reviews of Biophysics.