Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems

Minimum energy configurations in Celestial Mechanics are investigated. It is shown that this is not a well defined problem for point-mass celestial mechanics but well-posed for finite density distributions. This naturally leads to a granular mechanics extension of usual Celestial Mechanics questions such as relative equilibria and stability. This paper specifically studies and finds all relative equilibria and minimum energy configurations for N = 1, 2, 3 and develops hypotheses on the relative equilibria and minimum energy configurations for N ≫ 1 bodies.

[1]  Peter Goldreich,et al.  Spin-orbit coupling in the solar system , 1966 .

[2]  J. Marsden,et al.  Geometric Mechanics and the Dynamics of Asteroid Pairs , 2004 .

[3]  Richard Moeckel On central configurations , 1990 .

[4]  S. Smale,et al.  Topology and mechanics. II , 1970 .

[5]  S. Smale,et al.  Topology and mechanics. I , 1970 .

[6]  Andrzej J. Maciejewski,et al.  Reduction, relative equilibria and potential in the two rigid bodies problem , 1995 .

[7]  Daniel J. Scheeres,et al.  Stability in the Full Two-Body Problem , 2002 .

[8]  Perinkulam S. Krishnaprasad,et al.  Hamiltonian dynamics of a rigid body in a central gravitational field , 1990 .

[9]  D. Scheeres,et al.  Simulation and analysis of the dynamics of binary near-Earth Asteroid (66391) 1999 KW4 , 2008 .

[10]  Daniel J. Scheeres,et al.  DEM simulation of rotation-induced reshaping and disruption of rubble-pile asteroids , 2012 .

[11]  A. V. Sergeev,et al.  Formation of asteroid pairs by rotational fission , 2010, Nature.

[12]  Derek C. Richardson,et al.  Numerical experiments with rubble piles: equilibrium shapes and spins , 2005 .

[13]  Daniel J. Scheeres,et al.  Stability of the planar full 2-body problem , 2009 .

[14]  Vladimir I. Arnold,et al.  Mathematical aspects of classical and celestial mechanics (2nd ed.) , 1997 .

[15]  Daniel J. Scheeres,et al.  Rotational fission of contact binary asteroids , 2007 .

[16]  D. Saari On Bounded Solutions of the n-Body Problem , 1970 .

[17]  Joseph A. Burns,et al.  Asteroid Nutation Angles , 1973 .

[18]  J. C. Simo,et al.  Stability of relative equilibria. Part I: The reduced energy-momentum method , 1991 .

[19]  D. Scheeres,et al.  SIMULATING ASTEROID RUBBLE PILES WITH A SELF-GRAVITATING SOFT-SPHERE DISTINCT ELEMENT METHOD MODEL , 2011 .

[20]  D. Scheeres,et al.  Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems , 2011, 1404.0801.

[21]  Re'em Sari,et al.  TIDAL EVOLUTION OF RUBBLE PILES , 2007, 0712.0446.

[22]  K. Holsapple On YORP-induced spin deformations of asteroids , 2010 .

[23]  Antonio Castellanos,et al.  The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders , 2005 .

[24]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .