Coherence and sufficient sampling densities for reconstruction in compressed sensing

We give a new, very general, formulation of the compressed sensing problem in terms of coordinate projections of an analytic variety, and derive sufficient sampling rates for signal reconstruction. Our bounds are linear in the coherence of the signal space, a geometric parameter independent of the specific signal and measurement, and logarithmic in the ambient dimension where the signal is presented. We exemplify our approach by deriving sufficient sampling densities for low-rank matrix completion and distance matrix completion which are independent of the true matrix.

[1]  Huan Wang,et al.  Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.

[2]  Cristopher Moore,et al.  The rigidity transition in random graphs , 2010, SODA '11.

[3]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[4]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[5]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[6]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[7]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[8]  W. Rudin Principles of mathematical analysis , 1964 .

[9]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[10]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[11]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[12]  Franz J. Király,et al.  The algebraic combinatorial approach for low-rank matrix completion , 2012, J. Mach. Learn. Res..

[13]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[14]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[15]  Bill Jackson,et al.  The 2-dimensional rigidity of certain families of graphs , 2007 .

[16]  D. Mumford The red book of varieties and schemes , 1988 .

[17]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[18]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..