The redox state of iron in the matrix of CI, CM and metamorphosed CM chondrites by XANES spectroscopy

[1]  Paul Mann,et al.  Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites , 2012 .

[2]  F. Moynier,et al.  Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes , 2012 .

[3]  P. Bland,et al.  Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration , 2011 .

[4]  Katherine A. Kelley,et al.  The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle , 2011 .

[5]  J. Susini,et al.  Submicrometer hyperspectral X-ray imaging of heterogeneous rocks and geomaterials: applications at the Fe k-edge. , 2011, Analytical chemistry.

[6]  L. Lemelle,et al.  Speciation of sulfur in the insoluble organic matter from carbonaceous chondrites by XANES spectroscopy , 2010 .

[7]  M. Bourot‐Denise,et al.  The Paris CM Chondrite Yields New Insights on the Onset of Parent Body Alteration , 2010 .

[8]  G. Cody,et al.  Parent Body Modification of the Structure, and Elemental and Isotopic Compositions of IOM in Tagish Lake , 2010 .

[9]  B. Schmitt,et al.  Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids , 2010 .

[10]  P. Beck,et al.  Structural and Chemical Characterization of the Organic Matter in Metamorphosed CM Carbonaceous Chondrites , 2009 .

[11]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[12]  Tomoki Nakamura,et al.  Evaluation of dehydration mechanism during heating of hydrous asteroids based on mineralogical and chemical analysis of naturally and experimentally heated CM chondrites , 2008 .

[13]  M. Perronnet,et al.  Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80 °C , 2008 .

[14]  J. Eiler,et al.  Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites , 2007 .

[15]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[16]  L. Bonal,et al.  Organic matter and metamorphic history of CO chondrites , 2007 .

[17]  T. Ferroir,et al.  Shock‐induced compaction, melting, and entrapment of atmospheric gases in Martian meteorites , 2007 .

[18]  C. Floss,et al.  Brecciation and chemical heterogeneities of CI chondrites , 2006 .

[19]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[20]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[21]  Tomoki Nakamura Post-hydration thermal metamorphism of carbonaceous chondrites , 2005 .

[22]  J. Eiler,et al.  Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites 1 1 Associate , 2004 .

[23]  P. Buseck,et al.  Nanometer-scale measurements of iron oxidation states of cronstedtite from primitive meteorites , 2003 .

[24]  K. D. Jayasuriya,et al.  XANES calibrations for the oxidation state of iron in a silicate glass , 2003 .

[25]  J. Hybler,et al.  Coexistence of two polytypic groups in cronstedtite from Lostwithiel, England , 2002 .

[26]  M. Zolensky,et al.  A terrestrial origin for sulfate veins in CI1 chondrites , 2001 .

[27]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[28]  R. Pattrick,et al.  Surface oxidation studies of chalcopyrite and pyrite by glancing-angle X-ray absorption spectroscopy (REFLEXAFS) , 1999, Mineralogical Magazine.

[29]  E. Olevsky,et al.  Shock consolidation: Microstructurally-based analysis and computational modeling , 1999 .

[30]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[31]  Faith Vilas,et al.  A Cheaper, Faster, Better Way to Detect Water of Hydration on Solar System Bodies , 1994 .

[32]  Faith Vilas,et al.  Iron Alteration Minerals in the Visible and Near-Infrared Spectra of Low-Albedo Asteroids , 1994 .

[33]  M. Zolensky,et al.  Evidence of Thermal Metamorphism on the C, G, B, and F Asteroids , 1993, Science.

[34]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[35]  Y. Ikeda An overview of the research consortium,"Antarctic carbonaceouschondrites with CI affinities, Yamato-86720, Yamato-82162, andBelgica-7904 , 1992 .

[36]  C. Pillinger,et al.  Determination of Sulphur-Bearing Components in C1 and C2 Carbonaceous Chondrites by Stepped Combustion , 1991 .

[37]  H. McSween,et al.  Mineralogical alteration of CM carbonaceous chondrites: A view , 1989 .

[38]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[39]  J. Akai Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites , 1988 .

[40]  A. Rubin,et al.  Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules , 1986 .

[41]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[42]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[43]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[44]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[45]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .