An extension to Rough c-means clustering based on decision-theoretic Rough Sets model

Rough c-means algorithm has gained increasing attention in recent years. However, the assignment scheme of Rough c-means algorithm does not incorporate any information about the neighbors of the data point to be assigned and may cause undesirable solutions in practice. This paper proposes an extended Rough c-means clustering algorithm based on the concepts of decision-theoretic Rough Sets model. In the risk calculation, a new kind of loss function is utilized to capture the loss information of the neighbors. The assignment scheme of the present multi-category decision-theoretic Rough Sets model is also adjusted to deal with the potentially high computational cost. Experimental results are provided to validate the effectiveness of the proposed approach.

[1]  Bing Zhou,et al.  Multi-class decision-theoretic rough sets , 2014, Int. J. Approx. Reason..

[2]  Richard Weber,et al.  Dynamic rough clustering and its applications , 2012, Appl. Soft Comput..

[3]  Pradipta Maji,et al.  Microarray Time-Series Data Clustering Using Rough-Fuzzy C-Means Algorithm , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[4]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[5]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[6]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[7]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[8]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[9]  Qinghua Hu,et al.  Feature selection with test cost constraint , 2012, ArXiv.

[10]  Yiyu Yao,et al.  Two Semantic Issues in a Probabilistic Rough Set Model , 2011, Fundam. Informaticae.

[11]  Yiyu Yao,et al.  Probabilistic approaches to rough sets , 2003, Expert Syst. J. Knowl. Eng..

[12]  Yiyu Yao,et al.  Decision-Theoretic Rough Set Models , 2007, RSKT.

[13]  Witold Pedrycz,et al.  Some general comments on fuzzy sets of type-2 , 2009 .

[14]  Francesco Masulli,et al.  Soft transition from probabilistic to possibilistic fuzzy clustering , 2006, IEEE Transactions on Fuzzy Systems.

[15]  Pradipta Maji,et al.  Rough set based maximum relevance-maximum significance criterion and Gene selection from microarray data , 2011, Int. J. Approx. Reason..

[16]  T. Denœux,et al.  Clustering of proximity data using belief functions , 2003 .

[17]  Sushmita Mitra An evolutionary rough partitive clustering , 2004, Pattern Recognit. Lett..

[18]  Decui Liang,et al.  Incorporating logistic regression to decision-theoretic rough sets for classifications , 2014, Int. J. Approx. Reason..

[19]  Jingtao Yao,et al.  Game-Theoretic Rough Sets , 2011, Fundam. Informaticae.

[20]  Jiye Liang,et al.  International Journal of Approximate Reasoning Multigranulation Decision-theoretic Rough Sets , 2022 .

[21]  Georg Peters,et al.  Some refinements of rough k-means clustering , 2006, Pattern Recognit..

[22]  Yiyu Yao,et al.  Constructive and Algebraic Methods of the Theory of Rough Sets , 1998, Inf. Sci..

[23]  Sankar K. Pal,et al.  RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets , 2007, Fundam. Informaticae.

[24]  Yiu-ming Cheung,et al.  Feature Selection and Kernel Learning for Local Learning-Based Clustering , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Sankar K. Pal,et al.  Case generation using rough sets with fuzzy representation , 2004, IEEE Transactions on Knowledge and Data Engineering.

[26]  Thierry Denoeux,et al.  CECM: Constrained evidential C-means algorithm , 2012, Comput. Stat. Data Anal..

[27]  Fan Li,et al.  An Extension to Rough c-Means Clustering Algorithm Based on Boundary Area Elements Discrimination , 2013, Trans. Rough Sets.

[28]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[29]  Richard Weber,et al.  Evolutionary Rough k-Medoid Clustering , 2008, Trans. Rough Sets.

[30]  Pawan Lingras,et al.  Applications of Rough Set Based K-Means, Kohonen SOM, GA Clustering , 2007, Trans. Rough Sets.

[31]  Sankar K. Pal,et al.  Feature Selection Using f-Information Measures in Fuzzy Approximation Spaces , 2010, IEEE Transactions on Knowledge and Data Engineering.

[32]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[33]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[34]  Thierry Denoeux,et al.  EVCLUS: evidential clustering of proximity data , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[35]  Witold Pedrycz,et al.  Shadowed c-means: Integrating fuzzy and rough clustering , 2010, Pattern Recognit..

[36]  Wojciech Ziarko,et al.  Probabilistic approach to rough sets , 2008, Int. J. Approx. Reason..

[37]  Wei-Zhi Wu,et al.  Generalized fuzzy rough sets , 2003, Inf. Sci..

[38]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Richard Weber,et al.  Soft clustering - Fuzzy and rough approaches and their extensions and derivatives , 2013, Int. J. Approx. Reason..

[40]  A. Kolen Combinatorial optimization algorithm and complexity: Prentice-Hall, Englewood Cliffs, 1982, 496 pages, $49.50 , 1983 .

[41]  Witold Pedrycz,et al.  Rough–Fuzzy Collaborative Clustering , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[43]  Thierry Denoeux,et al.  RECM: Relational evidential c-means algorithm , 2009, Pattern Recognit. Lett..

[44]  Yiyu Yao,et al.  A Decision Theoretic Framework for Approximating Concepts , 1992, Int. J. Man Mach. Stud..

[45]  Sushmita Mitra,et al.  Rough-Fuzzy Clustering: An Application to Medical Imagery , 2008, RSKT.

[46]  Jingtao Yao,et al.  Web-Based Support Systems with Rough Set Analysis , 2007, RSEISP.

[47]  Bing Zhou A New Formulation of Multi-category Decision-Theoretic Rough Sets , 2011, RSKT.

[48]  Noureddine Zerhouni,et al.  Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory , 2012, Int. J. Approx. Reason..

[49]  David G. Stork,et al.  Pattern Classification , 1973 .

[50]  Yiyu Yao,et al.  Probabilistic rough set approximations , 2008, Int. J. Approx. Reason..

[51]  Witold Pedrycz,et al.  Shadowed sets: representing and processing fuzzy sets , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[52]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[53]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[54]  Guoyin Wang,et al.  An automatic method to determine the number of clusters using decision-theoretic rough set , 2014, Int. J. Approx. Reason..

[55]  Yiyu Yao,et al.  Attribute reduction in decision-theoretic rough set models , 2008, Inf. Sci..

[56]  Sankar K. Pal,et al.  Rough Set Based Generalized Fuzzy $C$ -Means Algorithm and Quantitative Indices , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[57]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[58]  Pawan Lingras,et al.  Interval Set Clustering of Web Users with Rough K-Means , 2004, Journal of Intelligent Information Systems.

[59]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[60]  Yiyu Yao,et al.  Bayesian Decision Theory for Dominance-Based Rough Set Approach , 2007, RSKT.

[61]  Min Chen,et al.  Rough Multi-category Decision Theoretic Framework , 2008, RSKT.

[62]  Yiyu Yao,et al.  Three-way decisions with probabilistic rough sets , 2010, Inf. Sci..

[63]  Boris Mirkin,et al.  Mathematical Classification and Clustering , 1996 .

[64]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[65]  Nouman Azam,et al.  Analyzing uncertainties of probabilistic rough set regions with game-theoretic rough sets , 2014, Int. J. Approx. Reason..

[66]  Thierry Denoeux,et al.  ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..

[67]  Gerald Schaefer,et al.  Rough Sets and near Sets in Medical Imaging: a Review , 2022 .

[68]  Min Chen,et al.  Rough Cluster Quality Index Based on Decision Theory , 2009, IEEE Transactions on Knowledge and Data Engineering.

[69]  Bernhard Schölkopf,et al.  A Local Learning Approach for Clustering , 2006, NIPS.