M-alternating paths in n-extendable bipartite graphs

Let G be a bipartite graph with bipartition (X,Y) which has a perfect matching. It is proved that G is n-extendable if and only if for any perfect matching M of G and for each pair of vertices x in X and y in Y there are n internally disjoint M-alternating paths connecting x and y. Furthermore, these n paths start and end with edges in E(G)\M. This theorem is then generalized.

[1]  Dingjun Lou Some conditions for n-extendable graphs , 1994, Australas. J Comb..

[2]  Dingjun Lou,et al.  On the structure of minimally n-extendable bipartite graphs , 1999, Discret. Math..

[3]  M D Plummer Matching Extension in Bipartite Graphs. 1. Introduction and Terminology , 1986 .

[4]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[5]  Michael D. Plummer,et al.  On n-extendable graphs , 1980, Discret. Math..

[6]  Dingjun Lou,et al.  Lower bound of cyclic edge connectivity for n-extendability of regular graphs , 1993, Discret. Math..

[7]  Dingjun Lou,et al.  On the 2-extendability of planar graphs , 1991, Discret. Math..

[8]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[9]  Michael D. Plummer,et al.  Extending matchings in graphs: A survey , 1994, Discret. Math..

[10]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Michael D. Plummer Extending matchings in planar graphs V , 1996, Discret. Math..