Quantifying nonclassicality of correlations based on the concept of nondisruptive local state identification

A bipartite state is classical with respect to party A if and only if party A can perform nondisruptive local state identification (NDLID) by a projective measurement. Motivated by this we introduce a class of quantum correlation measures for an arbitrary bipartite state. The measures utilize the general Schatten p-norm to quantify the amount of departure from the necessary and sufficient condition of classicality of correlations provided by the concept of NDLID. We show that for the case of Hilbert–Schmidt norm, i.e., $$p=2$$p=2, a closed formula is available for an arbitrary bipartite state. The reliability of the proposed measures is checked from the information-theoretic perspective. Also, the monotonicity behavior of these measures under LOCC is exemplified. The results reveal that for the general pure bipartite states these measures have an upper bound which is an entanglement monotone in its own right. This enables us to introduce a new measure of entanglement, for a general bipartite state, by convex roof construction. Some examples and comparison with other quantum correlation measures are also provided.

[1]  A. Uhlmann Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.

[2]  Chengjie Zhang,et al.  Witnessing the quantum discord of all the unknown states , 2011, 1102.4710.

[3]  Vlatko Vedral,et al.  Quantum Correlations in Mixed-State Metrology , 2010, 1003.1174.

[4]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[5]  MAXWELL’S DEMONS,et al.  Quantum Discord and Maxwell's Demons , 2002 .

[6]  I. S. Oliveira,et al.  Environment-induced sudden transition in quantum discord dynamics. , 2011, Physical review letters.

[7]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[8]  I. S. Oliveira,et al.  Experimentally witnessing the quantumness of correlations. , 2011, Physical review letters.

[9]  Aharon Brodutch,et al.  Criteria for measures of quantum correlations , 2012, Quantum Inf. Comput..

[10]  Shuangshuang Fu,et al.  Measurement-induced nonlocality. , 2011, Physical review letters.

[11]  Lin Chen,et al.  Detecting multipartite classical states and their resemblances , 2010, 1005.4348.

[12]  Zhi-Xi Wang,et al.  Assisted state discrimination without entanglement , 2011, 1111.2645.

[13]  F. F. Fanchini,et al.  Conservation law for distributed entanglement of formation and quantum discord , 2010, 1006.2460.

[14]  V. Giovannetti,et al.  Toward computability of trace distance discord , 2013, 1304.6879.

[15]  V. Karimipour,et al.  Power of quantum channels for creating quantum correlations , 2012, 1211.4805.

[16]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[17]  Robabeh Rahimi,et al.  Single-experiment-detectable nonclassical correlation witness , 2009, 0911.3460.

[18]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[19]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[20]  Jonas Maziero,et al.  THEORETICAL AND EXPERIMENTAL ASPECTS OF QUANTUM DISCORD AND RELATED MEASURES , 2011, 1107.3428.

[21]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[22]  Yannick Ole Lipp,et al.  Quantum discord as resource for remote state preparation , 2012, Nature Physics.

[23]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[24]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[25]  S. Luo On Quantum No-Broadcasting , 2010 .

[26]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[27]  F. Gao,et al.  Engineering hybrid nanotube wires for high-power biofuel cells. , 2010, Nature communications.

[28]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[29]  M Christandl,et al.  Broadcast copies reveal the quantumness of correlations. , 2009, Physical review letters.

[30]  V. Vedral,et al.  Witnessing the quantumness of a single system: From anticommutators to interference and discord , 2013 .

[31]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[32]  Marco Piani,et al.  Problem with geometric discord , 2012, 1206.0231.

[33]  Howard Georgi,et al.  Lie Algebras in Particle Physics , 1982 .

[34]  G. Guo,et al.  Experimental investigation of classical and quantum correlations under decoherence. , 2009, Nature communications.

[35]  F. M. Paula,et al.  Geometric quantum discord through the Schatten 1-norm , 2013, 1302.7034.

[36]  M. Tiersch,et al.  Entanglement and Decoherence , 2009 .

[37]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.

[38]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[39]  H. Cao,et al.  Distinguishing classical correlations from quantum correlations , 2012 .

[40]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[41]  Hamid Reza Mohammadi,et al.  Computable measure of quantum correlation , 2015, Quantum Inf. Process..

[42]  R. Schatten,et al.  Norm Ideals of Completely Continuous Operators , 1970 .

[43]  Aharon Brodutch,et al.  Quantum discord, local operations, and Maxwell's demons , 2010 .

[44]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[45]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[46]  Yang Zhang,et al.  Quantum correlation via quantum coherence , 2014, Quantum Inf. Process..