Creativity: Simulation, stimulation, and studies
暂无分享,去创建一个
Creativity is traditionally a topic of philosophical and scientific study considering the scenarios and human characteristics that enable creativity. More recently there has been an increased interest in studying the properties of computational systems that exhibit computational creative behavior and the creator’s cognitive processes when computers enhance human creativity. Developments in computer science and information technology are enhancing and augmenting the capability of human creative thinking and problem solving through access to larger information resources, multimodal interaction, and algorithms that facilitate the generation of creative ideas and products, exhibiting characteristics of novelty, value, and unexpectedness among others. We are still in the early stages of studying computational creativity where we are exploring our understanding of human creativity at the same time as exploring how computing simulates or stimulates human creative thinking. When studying creativity, we can analyze how creativity occurs focusing on the processes that produce creative artifacts, and we can analyze what makes an act creative focusing on how we evaluate an artifact to determine if it is creative. Research on creativity can focus on human creativity through psychology studies, computational creativity through philosophical and artificial intelligence studies, and human–computer creativity through human–computer interaction studies. The psychological study of human creativity tends to focus on the characteristics of creative people and the environment or situations in which creativity is facilitated. In cognitive studies, the research methods are frequently based on protocol analyses and experimental settings in order to provide systematic ways of studying thought processes of a person when he/she is exhibiting characteristics of creativity. The study of computational creativity, although inspired by concepts of human creativity, is often expressed in the formal language of search spaces and algorithms. The studies in this Special Issue focus on creativity in designers from the fields of architecture, engineering, and computer science. Whatever the field, there is a constant challenge to introduce creative ideas and go beyond existing or expected solutions. In pursuing creativity there is a need to generate ideas or solutions that can be recognized, can satisfy requirements and constraints relevant to the field, and can be novel and surprising, as well as exhibit other characteristics associated with creativity. The articles in this Special Issue provide an overview of the current methods that are used to study creativity, with the most prominent method being protocol analysis. All of the articles focus on studies of human creativity, and most focus on how to stimulate creativity by showing images, providing rule-base knowledge, or considering the level of abstraction of the problem description. There is a trend in the results presented in the articles in this issue that computing has a significant role to play in stimulating creativity by providing additional information to the designer while he/ she is designing. Each paper explores a different assumption about what that additional information should be and how that information impacts the design process. The Special Issue has two types of articles: studies and stimulation. The first two articles report on studies of creativity: the first article provides an overview of the study of creativity, and the second article describes a study of engineering design creativity with respect to specific formal models of engineering design. The remaining four articles report on different approaches to stimulating creativity and their effect on designers. These articles provide the foundational research for developing computational systems that stimulate and/or simulate creativity. The first article by Puccio, Cabra, Fox, and Cahen, “Creativity on Demand: Historical Approaches and Future Trends,” is an invited article that presents an historical perspective of psychology studies and creative thinking in humans. The article documents the recent increasing interest in creativity by researchers and businesses. The two interests come together as businesses realize the importance of creativity in maintaining a competitive edge and want to stimulate creativity in their employees. The article highlights creativity methods, such as lateral thinking and synectics, that have evolved over the years and speculates on how technology “may serve to shape the deliberate application of creativity.” In Srinivasan and Chakrabarti’s article, “Investigating Novelty-Outcome Relationship in Engineering Design,” they perform a protocol analysis of eight design sessions and find a Reprint requests to: Mary Lou Maher, Faculty of Architecture, Design, and Planning, Wilkinson Building (G04), 148 City Road, University of Sydney NSW 2006, Australia. E-mail: mary@arch.usyd.edu.au Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2010), 24, 149–151. # Cambridge University Press, 2010 0890-0604/10 $25.00 doi:10.1017/S0890060410000016