Advanced SAT Techniques for Abstract Argumentation

In the area of propositional satisfiability SAT, tremendous progress has been made in the last decade. Today's SAT technology covers not only the standard SAT problem, but also extensions thereof, such as computing a backbone the literals which are true in all satisfying assignments or minimal corrections sets minimal subsets of clauses which if dropped leave an originally unsatisfiable formula satisfiable. In this work, we show how these methods can be applied to solve important problems from the area of abstract argumentation. In particular, we present new systems for semi-stable, ideal, and eager semantics. Our experimental results demonstrate the feasibility of this approach.

[1]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[2]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[3]  Mikolás Janota,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence On Computing Minimal Correction Subsets , 2022 .

[4]  Armin Biere,et al.  Managing SAT inconsistencies with HUMUS , 2012, VaMoS '12.

[5]  Stefano Bistarelli,et al.  ConArg: A Constraint-Based Computational Framework for Argumentation Systems , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[6]  Marius Thomas Lindauer,et al.  Potassco: The Potsdam Answer Set Solving Collection , 2011, AI Commun..

[7]  Stefan Woltran,et al.  Parametric properties of ideal semantics , 2013, Artif. Intell..

[8]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[9]  Chris Reed,et al.  An analysis and hypothesis generation platform for heterogeneous cancer databases , 2012, COMMA.

[10]  Mikolás Janota,et al.  On Computing Backbones of Propositional Theories , 2010, ECAI.

[11]  Philippe Besnard,et al.  Checking the acceptability of a set of arguments , 2004, NMR.

[12]  Henri Prade,et al.  Using arguments for making and explaining decisions , 2009, Artif. Intell..

[13]  Alexander Felfernig,et al.  An efficient diagnosis algorithm for inconsistent constraint sets , 2011, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[14]  Floriana Grasso,et al.  A Model for a Motivational System Grounded on Value Based Abstract Argumentation Frameworks , 2011, eHealth.

[15]  Enrico Giunchiglia,et al.  Solving satisfiability problems with preferences , 2010, Constraints.

[16]  Tran Cao Son,et al.  Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning , 2011, Lecture Notes in Computer Science.

[17]  Stefan Woltran,et al.  Reasoning in Argumentation Frameworks Using Quantified Boolean Formulas , 2006, COMMA.

[18]  Katie Atkinson,et al.  Using Computational Argumentation to Support E-participation , 2009, IEEE Intelligent Systems.

[19]  Iyad Rahwan,et al.  Argumentation in Multi-Agent Systems: 8th International Workshop, ArgMAS 2011, Taipei, Taiwan, May 2011, Revised Selected Papers , 2012 .

[20]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[21]  Paolo Mancarella,et al.  Computing ideal sceptical argumentation , 2007, Artif. Intell..

[22]  Geoffrey J. Gordon,et al.  Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26–29, 2019, Proceedings , 2019, Lecture Notes in Computer Science.

[23]  Trevor J. M. Bench-Capon,et al.  Using argument schemes for hypothetical reasoning in law , 2010, Artificial Intelligence and Law.

[24]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[25]  Dov M. Gabbay Equational approach to argumentation networks , 2012, Argument Comput..

[26]  Wolfgang Faber,et al.  The DLV system for knowledge representation and reasoning , 2002, TOCL.

[27]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[28]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[29]  Anthony Hunter,et al.  Aggregating evidence about the positive and negative effects of treatments , 2012, Artif. Intell. Medicine.

[30]  Paul E. Dunne,et al.  The computational complexity of ideal semantics , 2009, Artif. Intell..

[31]  Ur Informationssysteme,et al.  Answer-Set Programming Encodings for Argumentation Frameworks , 2008 .

[32]  Stefan Woltran,et al.  Complexity of semi-stable and stage semantics in argumentation frameworks , 2010, Inf. Process. Lett..

[33]  Olivier Roussel,et al.  The International SAT Solver Competitions , 2012, AI Mag..

[34]  Sharad Malik,et al.  Boolean Satisfiability Solvers: Techniques and Extensions , 2012, Software Safety and Security.

[35]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[36]  Sharad Malik,et al.  SAT-based techniques for determining backbones for post-silicon fault localisation , 2011, 2011 IEEE International High Level Design Validation and Test Workshop.

[37]  Stefan Woltran,et al.  Making Use of Advances in Answer-Set Programming for Abstract Argumentation Systems , 2011, INAP/WLP.

[38]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[39]  Albert Oliveras,et al.  Cardinality Networks: a theoretical and empirical study , 2011, Constraints.

[40]  Stefan Woltran,et al.  Complexity-sensitive decision procedures for abstract argumentation , 2012, Artif. Intell..

[41]  Stefan Woltran,et al.  Special issue on answer set programming , 2011, AI Commun..

[42]  Iyad Rahwan,et al.  Argumentation in Multi-Agent Systems , 2010, Lecture Notes in Computer Science.

[43]  Stefan Woltran,et al.  Implementing Abstract Argumentation - A Survey , 2013 .

[44]  Massimiliano Giacomin,et al.  Computing Preferred Extensions in Abstract Argumentation: A SAT-Based Approach , 2013, TAFA.

[45]  Iyad Rahwan,et al.  Argumentation in Multi-Agent Systems , 2011, Lecture Notes in Computer Science.

[46]  Martin Wigbertus Antonius Caminada Comparing Two Unique Extension Semantics for Formal Argumentation : Ideal and Eager , 2007 .

[47]  Martin Caminada,et al.  A QBF-based formalization of abstract argumentation semantics , 2013, J. Appl. Log..

[48]  Sascha Ossowski Agreement Technologies , 2012, Lecture Notes in Computer Science.

[49]  Wolfgang Faber,et al.  Manifold Answer-Set Programs and Their Applications , 2011, Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning.

[50]  Ian Parberry,et al.  The Pairwise Sorting Network , 1992, Parallel Process. Lett..

[51]  Olga Damnjanovic,et al.  Using Computational Argumentation to Support eParticipation , 2013 .

[52]  Michael Codish,et al.  Pairwise Cardinality Networks , 2010, LPAR.