The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained

The Pencil Code is a highly modular physics-oriented simulation code that can be adapted to a wide range of applications. It is primarily designed to solve partial differential equations (PDEs) of compressible hydrodynamics and has lots of add-ons ranging from astrophysical magnetohydrodynamics (MHD) to meteorological cloud microphysics and engineering applications in combustion. Nevertheless, the framework is general and can also be applied to situations not related to hydrodynamics or even PDEs, for example when just the message passing interface or input/output strategies of the code are to be used. The code can also evolve Lagrangian (inertial and noninertial) particles, their coagulation and condensation, as well as their interaction with the fluid.

[1]  Axel Brandenburg,et al.  Simulations of nonhelical hydromagnetic turbulence. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Axel Brandenburg,et al.  How long can left and right handed life forms coexist? , 2004, International Journal of Astrobiology.

[3]  Axel Brandenburg The case for a distributed solar dynamo shaped by near-surface shear , 2005 .

[4]  Cambridge,et al.  MHD Simulations of Penumbra Fine Structure , 2006, astro-ph/0612648.

[5]  W. Dobler,et al.  Magnetic Field Generation in Fully Convective Rotating Spheres , 2006 .

[6]  W. Dobler,et al.  Radiative transfer in decomposed domains , 2006 .

[7]  Jeffrey S. Oishi,et al.  Turbulent Torques on Protoplanets in a Dead Zone , 2007, astro-ph/0702549.

[8]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[9]  M. Rheinhardt,et al.  Magnetic Diffusivity Tensor and Dynamo Effects in Rotating and Shearing Turbulence , 2007, 0710.4059.

[10]  MPIA Heidelberg,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods , 2007, astro-ph/0702625.

[11]  B. Dintrans,et al.  Direct numerical simulations of the κ-mechanism I. Radial modes in the purely radiative case , 2008 .

[12]  Axel Brandenburg,et al.  TURBULENT DYNAMOS IN SPHERICAL SHELL SEGMENTS OF VARYING GEOMETRICAL EXTENT , 2008, 0812.3106.

[13]  Hubert Klahr,et al.  A coagulation-fragmentation model for the turbulent growth and destruction of preplanetesimals , 2008, 0802.3331.

[14]  A. Johansen,et al.  Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks , 2009, 0901.1638.

[15]  Steinar Kragset,et al.  Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers , 2010, Journal of Fluid Mechanics.

[16]  M. Rheinhardt,et al.  Test-field method for mean-field coefficients with MHD background , 2010, 1004.0689.

[17]  Stockholm University,et al.  Turbulent transport in hydromagnetic flows , 2010, 1004.5380.

[18]  Axel Brandenburg,et al.  Pencil: Finite-difference Code for Compressible Hydrodynamic Flows , 2010 .

[19]  Sven Bingert,et al.  Intermittent heating in the solar corona employing a 3D MHD model , 2011, 1103.6042.

[20]  Jeffrey S. Oishi,et al.  MAGNETOROTATIONAL TURBULENCE TRANSPORTS ANGULAR MOMENTUM IN STRATIFIED DISKS WITH LOW MAGNETIC PRANDTL NUMBER BUT MAGNETIC REYNOLDS NUMBER ABOVE A CRITICAL VALUE , 2011 .

[21]  Axel Brandenburg,et al.  A high-order public domain code for direct numerical simulations of turbulent combustion , 2010, J. Comput. Phys..

[22]  Chao-Chin Yang,et al.  THERMAL-INSTABILITY-DRIVEN TURBULENT MIXING IN GALACTIC DISKS. I. EFFECTIVE MIXING OF METALS , 2012, 1208.4625.

[23]  Stockholm University,et al.  CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY , 2012, 1205.4719.

[24]  P. Pelupessy,et al.  Energy propagation through a protometabolism leading to the local emergence of singular stationary concentration profiles. , 2012, Chemistry.

[25]  G. R. Sarson,et al.  The supernova-regulated ISM – I. The multiphase structure , 2012, 1204.3567.

[26]  Axel Brandenburg,et al.  Active Region Formation through the Negative Effective Magnetic Pressure Instability , 2012, 1203.1232.

[27]  M. Kuchner,et al.  Formation of sharp eccentric rings in debris disks with gas but without planets , 2013, Nature.

[28]  Axel Brandenburg,et al.  Surface flux concentrations in a spherical α 2 dynamo , 2013, 1302.5841.

[29]  S. Bingert,et al.  Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region , 2013, 1305.5693.

[30]  Stockholm University,et al.  ON THE CAUSE OF SOLAR-LIKE EQUATORWARD MIGRATION IN GLOBAL CONVECTIVE DYNAMO SIMULATIONS , 2014, 1409.3213.

[31]  Axel Brandenburg,et al.  QUENCHING AND ANISOTROPY OF HYDROMAGNETIC TURBULENT TRANSPORT , 2014, 1406.4521.

[32]  Axel Brandenburg,et al.  Near-polytropic stellar simulations with a radiative surface , 2013, 1308.1660.

[33]  Viggo Hansteen,et al.  Modeling Repeatedly Flaring δ Sunspots. , 2016, Physical review letters.

[34]  Anders Johansen,et al.  INTEGRATION OF PARTICLE-GAS SYSTEMS WITH STIFF MUTUAL DRAG INTERACTION , 2016, 1603.08523.

[35]  Nils Erland L. Haugen,et al.  Eulerian and Lagrangian approaches to multidimensional condensation and collection , 2016 .

[36]  Stockholm University,et al.  Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars , 2016, 1601.03730.

[37]  Terese Løvås,et al.  Correlation effects between turbulence and the conversion rate of pulverized char particles , 2017 .

[38]  Erik Schnetter,et al.  SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics , 2016, J. Comput. Phys..

[39]  Stockholm University,et al.  Extended Subadiabatic Layer in Simulations of Overshooting Convection , 2017, 1703.06845.

[40]  Anders Johansen,et al.  Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk , 2018, The Astrophysical Journal.

[41]  M. Juvela,et al.  The supernova-regulated ISM , 2017, Astronomy & Astrophysics.

[42]  Tai Jin,et al.  Treatment of solid objects in the Pencil Code using an immersed boundary method and overset grids , 2018, Geophysical & Astrophysical Fluid Dynamics.

[43]  Lars Mattsson,et al.  Clustering and dynamic decoupling of dust grains in turbulent molecular clouds , 2018, Monthly Notices of the Royal Astronomical Society.

[44]  Andreas Schreiber,et al.  Azimuthal and Vertical Streaming Instability at High Dust-to-gas Ratios and on the Scales of Planetesimal Formation , 2018, The Astrophysical Journal.

[45]  A. Boyarsky,et al.  Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations , 2017, 1711.09733.

[46]  Chengeng Qian,et al.  Convergence properties of detonation simulations , 2019, Geophysical & Astrophysical Fluid Dynamics.

[47]  Axel Brandenburg The Limited Roles of Autocatalysis and Enantiomeric Cross-Inhibition in Achieving Homochirality in Dilute Systems , 2019, Origins of Life and Evolution of Biospheres.

[48]  Sayan Mandal,et al.  The timestep constraint in solving the gravitational wave equations sourced by hydromagnetic turbulence , 2018, Geophysical & Astrophysical Fluid Dynamics.

[49]  P. J. Käpylä,et al.  Overshooting in simulations of compressible convection , 2018, Astronomy & Astrophysics.

[50]  Philippe-A. Bourdin,et al.  Driving solar coronal MHD simulations on high-performance computers , 2019, Geophysical & Astrophysical Fluid Dynamics.

[51]  Axel Brandenburg,et al.  The time step constraint in radiation hydrodynamics , 2019, Geophysical & Astrophysical Fluid Dynamics.

[52]  N. Olspert,et al.  Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection , 2018, Geophysical & Astrophysical Fluid Dynamics.

[53]  N. E. L. Haugen,et al.  High-order overset grid method for detecting particle impaction on a cylinder in a cross flow , 2018, International Journal of Computational Fluid Dynamics.

[54]  Piyali Chatterjee,et al.  Testing Alfvén wave propagation in a “realistic” set-up of the solar atmosphere , 2018, Geophysical & Astrophysical Fluid Dynamics.

[55]  Kun Luo,et al.  Drag force for a burning particle , 2020, Combustion and Flame.

[56]  Scientific usage of the Pencil Code Search results using and Bumblebee , 2019 .