A Category-Theoretic Approach to Systems in a Fuzzy World
暂无分享,去创建一个
[1] M. Schützenberger. On a Theorem of R. Jungen , 1962 .
[2] Michael Athans,et al. Optimal Control , 1966 .
[3] J. Goguen. L-fuzzy sets , 1967 .
[4] Michael A. Arbib,et al. Topics in Mathematical System Theory , 1969 .
[5] S. Maclane,et al. Categories for the Working Mathematician , 1971 .
[6] J. Goguen. Minimal realization of machines in closed categories , 1972 .
[7] Roger C. Schank,et al. Computer Models of Thought and Language , 1974 .
[8] Michael A. Arbib,et al. Foundations of system theory: Decomposable systems , 1974, Autom..
[9] Joseph A. Goguen,et al. Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets , 1974, Int. J. Man Mach. Stud..
[10] Hartmut Ehrig,et al. Universal theory of automata - a categorial approach , 1974, Teubner Studienbücher.
[11] Hartmut Ehrig,et al. Structure Theory of Automata , 1974 .
[12] R. Thom. Stabilité structurelle et morphogenèse , 1974 .
[13] E. S. Bainbridge. Adressed machines and duality , 1974, Category Theory Applied to Computation and Control.
[14] M. Arbib,et al. MACHINES IN A CATEGORY: AN EXPOSITORY INTRODUCTION* , 1974 .
[15] Louis Padulo. System theory , 1974 .
[16] M. Arbib,et al. Fuzzy machines in a category , 1975, Bulletin of the Australian Mathematical Society.
[17] M. Arbib,et al. Arrows, Structures, and Functors: The Categorical Imperative , 1975 .
[18] Ernest Gene Manes,et al. Category Theory Applied to Computation and Control , 1975, Lecture Notes in Computer Science.
[19] Hartmut Ehrig,et al. Universal Theory of Automata , 1976 .