Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion

[1]  A. Yang,et al.  CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo , 2005, Cancer Gene Therapy.

[2]  M. Pesce,et al.  SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. , 2004, Blood.

[3]  D. Piwnica-Worms,et al.  CXCR4 Regulates Growth of Both Primary and Metastatic Breast Cancer , 2004, Cancer Research.

[4]  H. Moses,et al.  Stromal fibroblasts in cancer initiation and progression , 2004, Nature.

[5]  N. Fusenig,et al.  Friends or foes — bipolar effects of the tumour stroma in cancer , 2004, Nature Reviews Cancer.

[6]  C. Morrison,et al.  Combined Total Genome Loss of Heterozygosity Scan of Breast Cancer Stroma and Epithelium Reveals Multiplicity of Stromal Targets , 2004, Cancer Research.

[7]  B. Fingleton,et al.  Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. , 2004, Cancer cell.

[8]  T. Ratliff TGF-Beta Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia , 2004 .

[9]  E. Galun,et al.  Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[10]  Geoffrey C Gurtner,et al.  Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 , 2004, Nature Medicine.

[11]  K. Malcolm,et al.  Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. , 2004, Blood.

[12]  Rameen Beroukhim,et al.  Molecular characterization of the tumor microenvironment in breast cancer. , 2004, Cancer cell.

[13]  F. Balkwill Cancer and the chemokine network , 2004, Nature Reviews Cancer.

[14]  M. Washington,et al.  TGF-ß Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia , 2004, Science.

[15]  A. Schober,et al.  Crucial Role of Stromal Cell–Derived Factor-1&agr; in Neointima Formation After Vascular Injury in Apolipoprotein E–Deficient Mice , 2003, Circulation.

[16]  Andrew L Kung,et al.  A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Hayward,et al.  Role of the stromal microenvironment in carcinogenesis of the prostate , 2003, International journal of cancer.

[18]  H. Moch,et al.  Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL , 2003, Nature.

[19]  T. Ochiya,et al.  Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. , 2003, Biochemical and biophysical research communications.

[20]  Eric J Topol,et al.  Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy , 2003, The Lancet.

[21]  V. Planelles,et al.  Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA. , 2003, AIDS research and human retroviruses.

[22]  R. Kerbel,et al.  Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. , 2003, Cancer research.

[23]  Shahin Rafii,et al.  Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration , 2003, Nature Medicine.

[24]  K. Korach,et al.  Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. , 2003, Molecular endocrinology.

[25]  William C Hahn,et al.  Lentivirus-delivered stable gene silencing by RNAi in primary cells. , 2003, RNA.

[26]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[27]  Tesshi Yamada,et al.  Modified scar grade , 2002, Cancer.

[28]  M. Salmon,et al.  Why does inflammation persist: a dominant role for the stromal microenvironment? , 2002, Expert Reviews in Molecular Medicine.

[29]  R. Weinberg,et al.  IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. , 2002, Developmental cell.

[30]  Satoshi Matsumoto,et al.  Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas , 2002, Nature Genetics.

[31]  R. Taichman,et al.  G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4 , 2002, Nature Immunology.

[32]  S. Rafii,et al.  Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand , 2002, Cell.

[33]  R. Silver,et al.  Thrombin Differentiates Normal Lung Fibroblasts to a Myofibroblast Phenotype via the Proteolytically Activated Receptor-1 and a Protein Kinase C-dependent Pathway* , 2001, The Journal of Biological Chemistry.

[34]  S. Rafii,et al.  Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth , 2001, Nature Medicine.

[35]  Mina J. Bissell,et al.  Putting tumours in context , 2001, Nature Reviews Cancer.

[36]  S. Inoue,et al.  Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[37]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[38]  B. Hinz,et al.  Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. , 2001, Molecular biology of the cell.

[39]  T. Tlsty,et al.  Stromal cells can contribute oncogenic signals. , 2001, Seminars in cancer biology.

[40]  W. Hahn,et al.  Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. , 2001, Genes & development.

[41]  G. Bratthauer,et al.  Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. , 2000, Cancer research.

[42]  J. Isner,et al.  Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Barcellos-Hoff,et al.  Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. , 2000, Cancer research.

[44]  P. Hein,et al.  Carcinoma-associated fibroblasts stimulate tumor progression of initiated human epithelium , 2000, Breast Cancer Research.

[45]  A. Amara,et al.  Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. , 1999, The American journal of pathology.

[46]  G. Gabbiani,et al.  Mechanisms of myofibroblast activity and phenotypic modulation. , 1999, Experimental cell research.

[47]  A. Foussat,et al.  Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  G. Colditz,et al.  Radial scars in benign breast-biopsy specimens and the risk of breast cancer. , 1999, The New England journal of medicine.

[49]  J. Folkman,et al.  Isolation and characterization of endothelial progenitor cells from mouse embryos. , 1998, Development.

[50]  G. Caracciolo,et al.  Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. , 1997, Panminerva medica.

[51]  Takayuki Asahara,et al.  Isolation of Putative Progenitor Endothelial Cells for Angiogenesis , 1997, Science.

[52]  M J Bissell,et al.  Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. , 1996, Physiological reviews.

[53]  M. Ikawa,et al.  A rapid and non‐invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP) , 1995, FEBS letters.

[54]  A. Harris,et al.  Quantitation and prognostic value of breast cancer angiogenesis: Comparison of microvessel density, Chalkley count, and computer image analysis , 1995, The Journal of pathology.

[55]  J. Inazawa,et al.  Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. , 1995, Genomics.

[56]  J. Folkman,et al.  Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. , 1991, The New England journal of medicine.

[57]  M. Sporn,et al.  Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-beta. , 1990, Science.

[58]  W. Schürch,et al.  Smooth‐muscle differentiation in stromal cells of malignant and non‐malignant breast tissues , 1988, International journal of cancer.

[59]  H. Dvorak Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. , 1986, The New England journal of medicine.

[60]  D. Lowy,et al.  Transfection of v-rasH DNA into MCF-7 human breast cancer cells bypasses dependence on estrogen for tumorigenicity. , 1985, Science.

[61]  I. M. Neiman,et al.  [Inflammation and cancer]. , 1974, Patologicheskaia fiziologiia i eksperimental'naia terapiia.