Anisotropic chemical pressure effects in single-component molecular metals based on radical dithiolene and diselenolene gold complexes.

On the basis of the reported radical neutral complex [Au(Et-thiazdt)(2)] (Et-thiazdt = N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate), a series of single-component conductors derived from [Au(Et-thiazdt)(2)], also noted as [AuS(4)(═S)(2)], has been developed, by replacing the outer sulfur atoms of the thiazoline-2-thione rings by oxygen atoms and/or by replacing the coordinating sulfur atoms by selenium atoms toward the corresponding diselenolene complexes. Comparison of the X-ray crystal structures and transport properties of the four isostructural complexes, noted as [AuS(4)(═S)(2)], [AuS(4)(═O)(2)], [AuSe(4)(═S)(2)], and [AuSe(4)(═O)(2)], shows that the oxygen substitution on the outer thiazoline ring actually decreases the conductivity by a factor of 100, despite a contracted unit cell volume reflecting a positive chemical pressure effect. On the other hand, the S/Se substitution increases the conductivity by a factor of 100, and the pressure needed to transform these semiconductors into the metallic state is shifted from 13 kbar in [AuS(4)(═S)(2)] to only ≈6 kbar in [AuSe(4)(═S)(2)]. Analysis of unit cell evolutions and ab initio band structure calculations demonstrates the strongly anisotropic nature of this chemical pressure effect and provides an explanation for the observed changes in conductivity. The greater sensitivity of these neutral single-component conductors to external pressure, as compared with "classical" radical salts, is also highlighted.

[1]  J. Tse,et al.  Crossing the insulator-to-metal barrier with a thiazyl radical conductor. , 2012, Journal of the American Chemical Society.

[2]  J. Pouget Structural Aspects of the Bechgaard and Fabre Salts: An Update , 2012 .

[3]  O. Jeannin,et al.  Structural properties of solid solutions of the non‐dimerized, 3/4‐filled conductors (o‐DMTTF)2X (X = Cl, Br, I) , 2012 .

[4]  A. Assoud,et al.  A Bimodal Oxobenzene-bridged Bisdithiazolyl Radical Conductor , 2012 .

[5]  E. Nishibori,et al.  Single-component Layered Molecular Conductor, [Au(ptdt)2] , 2012 .

[6]  A. Assoud,et al.  Semiquinone-bridged bisdithiazolyl radicals as neutral radical conductors. , 2012, Journal of the American Chemical Society.

[7]  O. Jeannin,et al.  Phase diagram of the correlated quarter-filled-band organic salt series (o-DMTTF)2X (X=Cl, Br, I) , 2011 .

[8]  A. Assoud,et al.  The first semiquinone-bridged bisdithiazolyl radical conductor: a canted antiferromagnet displaying a spin-flop transition. , 2011, Chemical communications.

[9]  L. Downie,et al.  From magnets to metals: the response of tetragonal bisdiselenazolyl radicals to pressure. , 2011, Journal of the American Chemical Society.

[10]  M. Dressel,et al.  Transport studies at the Mott transition of the two-dimensional organic metal κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1-x , 2011 .

[11]  R. Hicks Stable radicals : fundamentals and applied aspects of odd-electron compounds , 2010 .

[12]  J. Íñiguez,et al.  A single-component molecular metal based on a thiazole dithiolate gold complex. , 2009, Journal of the American Chemical Society.

[13]  P. Batail,et al.  Charge ordering, symmetry and electronic structure issues and Wigner crystal structure of the quarter-filled band Mott insulators and high pressure metals δ-(EDT-TTF-CONMe2)2X, X = Br and AsF6 , 2009 .

[14]  M. Sakata,et al.  High-pressure (up to 10.7 GPa) crystal structure of single-component molecular metal [Au(tmdt)2]. , 2009, Journal of the American Chemical Society.

[15]  E. Reinheimer,et al.  A series of strongly one-dimensional organic metals with strictly uniform stacks: (o-DMTTF)2X (X = Cl, Br, I). , 2008, Dalton transactions.

[16]  T. Roisnel,et al.  Titanocene complexes of the N -methyl and N -phenyl-1,3-thiazoline-2-thione-4,5-dithiolates and 4,5-diselenolate ligands , 2008 .

[17]  H. Kobayashi,et al.  NMR Evidence for Antiferromagnetic Transition in the Single-Component Molecular Conductor, [Au(tmdt)_2] at 110 K(Condensed matter : electronics structure and electrical, magnetic, and optical properties) , 2007, 0707.2615.

[18]  T. Roisnel,et al.  Influence of the thiazole backbone on the structural, redox, and optical properties of dithiolene and diselenolene complexes. , 2007, Inorganic chemistry.

[19]  J. Britten,et al.  An alternating pi-stacked bisdithiazolyl radical conductor. , 2007, Journal of the American Chemical Society.

[20]  F. Neese,et al.  Molecular and electronic structure of square-planar gold complexes containing two 1,2-Di(4-tert-butylphenyl)ethylene-1,2-dithiolato ligands: [Au(2L)2]1+/0/1-/2-. A combined experimental and computational study. , 2007, Inorganic chemistry.

[21]  M. Dressel,et al.  Bandwidth-controlled Mott transition inκ−(BEDT−TTF)2Cu[N(CN)2]BrxCl1−x: Optical studies of localized charge excitations , 2006, 0903.0244.

[22]  D. Lorcy,et al.  1,3-Thiazoline-2-thione-4,5-dithiolato, an efficient building block towards functionalized dithiadiazafulvalenes , 2006 .

[23]  R. Kondo,et al.  High-pressure research in organic conductors , 2006 .

[24]  M. Sakata,et al.  Magnetic transitions of single-component molecular metal [Au(tmdt)2] and its alloy systems. , 2006, Journal of the American Chemical Society.

[25]  K. Terakura,et al.  Crystal structures and physical properties of single-component molecular conductors consisting of nickel and gold complexes with bis(trifluoromethyl)tetrathiafulvalenedithiolate ligands , 2005 .

[26]  Takashi Yamamoto,et al.  Robust superconducting state in the low-quasiparticle-density organic metals β″-(BEDT-TTF)4[(H3O)M(C2O4)3]Y: Superconductivity due to proximity to a charge-ordered state , 2005 .

[27]  D. Jérome Organic conductors: from charge density wave TTF-TCNQ to superconducting (TMTSF)2PF6. , 2004, Chemical reviews.

[28]  R. Kondo,et al.  Control of electronic properties of molecular conductors by uniaxial strain. , 2004, Chemical reviews.

[29]  R. Kato Conducting metal dithiolene complexes: structural and electronic properties. , 2004, Chemical reviews.

[30]  A. Kobayashi,et al.  Single-component molecular metals with extended-TTF dithiolate ligands. , 2004, Chemical reviews.

[31]  N. Yoneyama,et al.  Substitution Effect by Deuterated Donors on Superconductivity in κ-(BEDT-TTF)2Cu[N(CN)2]Br , 2004, cond-mat/0402115.

[32]  P. Day,et al.  Fermi-surface topology and the effects of intrinsic disorder in a class of charge-transfer salts containing magnetic ions: β″-(BEDT-TTF) [HO)M(CO)]Y (M=Ga, Cr, Fe; Y=CHN) , 2003, cond-mat/0307147.

[33]  R. Clérac,et al.  A Genuine Quarter‐Filled Band Mott Insulator, (EDT‐TTF‐CONMe2)2AsF6: Where the Chemistry and Physics of Weak Intermolecular Interactions Act in Unison , 2003 .

[34]  M. Sakata,et al.  Highly conducting crystals based on single-component gold complexes with extended-TTF dithiolate ligands. , 2003, Journal of the American Chemical Society.

[35]  O. Dautel,et al.  Fluorine Segregation Controls the Solid-State Organization and Electronic Properties of Ni and Au Dithiolene Complexes: Stabilization of a Conducting Single-Component Gold Dithiolene Complex , 2002 .

[36]  P. Monceau,et al.  Role of the dimerized gap due to anion ordering in spin-density wave phase of (TMTSF)2ClO4 at high magnetic fields , 2002 .

[37]  K. Miyagawa,et al.  Proximity of pseudogapped superconductor and commensurate antiferromagnet in a quasi-two-dimensional organic system. , 2002, Physical review letters.

[38]  W. Yu,et al.  Competition and coexistence of bond and charge orders in (TMTTF)2AsF6 , 2002, cond-mat/0205026.

[39]  C. Rovira,et al.  Gold complexes with dithiothiophene ligands: a metal based on a neutral molecule. , 2001, Chemistry.

[40]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[41]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[42]  C. Lenoir,et al.  Substitutional disorder and anion ordering transition in the (TMTSF){sub 2}(ReO{sub 4}){sub 1{minus}x}(ClO{sub 4}){sub x} solid solution , 1997 .

[43]  K. Kanoda,et al.  DEUTERATED KAPPA -(BEDT-TTF)2CUN(CN)2BR : A SYSTEM ON THE BORDER OF THE SUPERCONDUCTOR-MAGNETIC-INSULATOR TRANSITION , 1997 .

[44]  M. Kurmoo,et al.  Isothermal compressibility and pressure dependence of the crystal structures of the superconducting charge-transfer salt κ-(BEDT-TTF)2Cu(NCS)2 [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene] , 1997 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Hsien‐Hau Wang,et al.  Determination of a mass isotope effect on Tc in an electron-donor-based organic superconductor, κ-(ET)2Cu(NCS)2, where ET represents bis(ethylenedithio)tetrathiafulvalene , 1996 .

[48]  Thorup,et al.  Structural, electrical, magnetic, and optical properties of bis-benzene-1,2-dithiolato-Au(IV) crystals. , 1996, Physical review. B, Condensed matter.

[49]  M. Kurmoo,et al.  Crystal structure of the spin-Peierls compound α′-(BEDT–TTF)2Ag(CN)2 at high pressure and low temperature , 1995 .

[50]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[51]  Maria Cristina Burla,et al.  SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .

[52]  Hans Christoph Wolf,et al.  The organic metal (Me2-DCNQI)2Cu: Dramatic changes in solid-state properties and crystal structure due to secondary deuterium effects , 1993 .

[53]  D. Jérome,et al.  The physics of organic superconductors. , 1991, Science.

[54]  D. L. Overmyer,et al.  Strain index, lattice softness and superconductivity of organic donor-molecule salts: Crystal and electronic structures of three isostructural salts k-(BEDT- TTF)2Cu[N(CN)2]X (X=Cl, Br, I) , 1991 .

[55]  J. Schlueter,et al.  Structure of di[3,4;3',4'‐bis(ethylenedithio)‐2,2',5,5'‐tetrathiafulvalenium]tetraiodogallate(III), (BEDT‐TTF)2GaI4 , 1988 .

[56]  Hsien‐Hau Wang,et al.  Crystal structures of [Au(DDDT)2]0 and [(n-Bu)4N][Ni(DDDT)2] and the ligandlike character of the isoelectronic radicals [Au(DDDT)2]0 and [Ni(DDDT)2]− , 1987 .

[57]  B. Gallois,et al.  Neutron low-temperature (4 and 20 K) and X-ray high-pressure (6.5 x 102 and 9.8 x 102 MPa) structures of the organic superconductor di(2,3,6,7-tetramethyl-1,4,5,8-tetraselenafulvalenium) hexafluorophosphate, (TMTSF)2PF6 , 1986 .

[58]  H. H. Wang,et al.  Effect of structural disorder on organic superconductors: a neutron diffraction body of "high-Tc" .beta.*-(bis(ethylenedithio)tetrathiafulvalene)2 triiodide at 4.5 K and 1.5 kbar. , 1986, Journal of the American Chemical Society.

[59]  Parkin,et al.  Structureless transition and strong localization effects in bis-tetramethyltetrathiafulvalenium salts , 1985, Physical review. B, Condensed matter.

[60]  A. H. Reddoch,et al.  Influence of deuteration on the order–disorder phase transition of anthracene–tetracyanobenzene , 1980 .

[61]  J. Fabre,et al.  Isotope effect on the Peierls transition temperature of TTF-TCNQ , 1978 .

[62]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[63]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .