Rotationally Invariant Crossover Operators in Evolutionary Multi-objective Optimization

Multi-objective problems with parameter interactions can present difficulties to many optimization algorithms. We have investigated the behaviour of Simplex Crossover (SPX), Unimodal Normally Distributed Crossover (UNDX), Parent-centric Crossover (PCX), and Differential Evolution (DE), as possible alternatives to the Simulated Binary Crossover (SBX) operator within the NSGA-II (Non-dominated Sorting Genetic Algorithm II) on four rotated test problems exhibiting parameter interactions. The rotationally invariant crossover operators demonstrated improved performance in optimizing the problems, over a non-rotationally invariant crossover operator.

[1]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[2]  S. Kobayashi,et al.  Optimal lens design by real-coded genetic algorithms using UNDX , 2000 .

[3]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[4]  K. Deb,et al.  Real-coded evolutionary algorithms with parent-centric recombination , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[6]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[7]  Xiaodong Li,et al.  Rotated test problems for assessing the performance of multi-objective optimization algorithms , 2006, GECCO.

[8]  K. Multiobjective Optimization Using a Pareto Differential Evolution Approach , 2022 .

[9]  K. Multiobjective Optimization Using a Pareto Differential Evolution Approach , 2022 .

[10]  C. S. Chang,et al.  Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system , 2000 .

[11]  Xiaodong Li,et al.  Incorporating directional information within a differential evolution algorithm for multi-objective optimization , 2006, GECCO.

[12]  Pedro J. Ballester,et al.  Real-Parameter Genetic Algorithms for Finding Multiple Optimal Solutions in Multi-modal Optimization , 2003, GECCO.

[13]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[16]  Shigenobu Kobayashi,et al.  Multi-Parental Extension of the Unimodal Normal Distribution Crossover for Real-Coded Genetic Algorithms , 2000 .

[17]  Hajime Kita,et al.  A Comparison Study of Self-Adaptation in Evolution Strategies and Real-Coded Genetic Algorithms , 2001, Evolutionary Computation.

[18]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[19]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[20]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[21]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[22]  Shigenobu Kobayashi,et al.  A real-coded genetic algorithm using the unimodal normal distribution crossover , 2003 .