Direct current arc plasma thrusters for space applications: basic physics, design and perspectives

Renewed interest in space exploration and aspirations for colonization of Mars, Moon and possibly other extra-terrestrial bodies puts pressure on the present-day space technology to become more efficient. Space engines, or thrusters, are the key element of any spacecraft and thus, continuous improvement in thruster design and performance is needed to realize the mankind’s goal of becoming a truly space faring civilization. Space micropropulsion systems that utilize plasma and electric fields to accelerate and expel mass to produce reactive thrust are advanced propulsion systems that can deliver very high specific impulse. In this review, we outline basic physical principles and design approaches for future direct-arc plasma propulsion systems. We then examine major obstacles and prospects for application of direct-arc plasmas in this type of space thrusters.

[1]  E. Oks,et al.  Production of neutrals and their effects on the ion charge states in cathodic vacuum arc plasmas , 2007 .

[2]  I. Beilis Parameters of the Kinetic Layer of Arc-Discharge Cathode Region , 1985, IEEE Transactions on Plasma Science.

[3]  A. Anders,et al.  Puzzling differences in bismuth and lead plasmas: Evidence for the significant role of neutrals in cathodic vacuum arcs , 2007 .

[4]  S. Goldsmith,et al.  Vacuum arc plasma jet propagation in a toroidal duct , 1996 .

[5]  I. A. Krinberg,et al.  Influence of an axial magnetic field on the electron temperature in a vacuum arc plasma , 2004, IEEE Transactions on Plasma Science.

[6]  Mohan V. Jacob,et al.  Catalyst-Free Plasma Enhanced Growth of Graphene from Sustainable Sources. , 2015, Nano letters.

[7]  D. Ferguson,et al.  NASA GRC and MSFC Space Plasma Arc Testing Procedures , 2006, IEEE Transactions on Plasma Science.

[8]  Mohan V. Jacob,et al.  Optical and chemical properties of polyterpenol thin films deposited via plasma-enhanced chemical vapor deposition , 2011 .

[9]  E. Oks,et al.  Measurement of total ion current from vacuum arc plasmasources , 2005 .

[10]  Shenli Jia,et al.  Simulation of Vacuum Arc Characteristics Under Four Kinds of Axial Magnetic Fields and Comparison with Experimental Results , 2011 .

[11]  N St J Braithwaite,et al.  Introduction to gas discharges , 2000 .

[12]  Samudra E. Haque,et al.  Electric propulsion for small satellites , 2014 .

[13]  Shenli Jia,et al.  The Influence of Axial Magnetic Field Distribution on High-Current Vacuum Arc , 2009, IEEE Transactions on Plasma Science.

[14]  Shuhao Wang,et al.  Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field , 2018 .

[15]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[16]  Shuyan Xu,et al.  Prospects and physical mechanisms for photonic space propulsion , 2018, Nature Photonics.

[17]  C. Kimblin Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs , 1974 .

[18]  S. Jia,et al.  Modeling of cathode spot crater formation and development in vacuum arc , 2017 .

[19]  Joseph Lukas,et al.  High thrust-to-power ratio micro-cathode arc thruster , 2016 .

[20]  Wang Yudong,et al.  The composition, microstructure and mechanical properties of Ni/DLC nanocomposite films by filtered cathodic vacuum arc deposition , 2017 .

[21]  Michael Keidar,et al.  2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field , 1996 .

[22]  R. Methling,et al.  Spectroscopy of single vacuum arc cathode spots with improved sensitivity , 2013, 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV).

[24]  U. Cvelbar,et al.  Formation of vertically oriented graphenes: what are the key drivers of growth? , 2018, 2D Materials.

[25]  Philip J. Martin,et al.  Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition , 2017 .

[26]  G. A. Mesyats,et al.  Ecton mechanism of the vacuum arc cathode spot , 1995 .

[27]  A. Anders,et al.  Pulsed vacuum-arc ion source operated with a “triggerless” arc initiation method , 2000 .

[28]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[29]  Ronald C. Davidson,et al.  Vlasov equilibrium and nonlocal stability properties of an inhomogeneous plasma column , 1976 .

[30]  Igor Levchenko,et al.  Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays , 2008 .

[31]  A. Anders Ion charge state distributions of pulsed vacuum arcs-interpretation of their temporal development , 1998 .

[32]  B. Wang,et al.  Target thrust measurement for applied-field magnetoplasmadynamic thruster , 2018 .

[33]  I. Brown Vacuum Arc Ion Sources , 1994 .

[34]  Michael Keidar,et al.  Magnetically enhanced vacuum arc thruster , 2005 .

[35]  M. Keidar,et al.  Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Self‐Assembly at the Nanoscale , 2018, Advanced materials.

[36]  E. Oks,et al.  Multiple Ionization Of Metal Ions By ECR Heating Of Electrons In Vacuum Arc Plasmas , 2004 .

[37]  M. Keidar,et al.  Advanced Materials for Next‐Generation Spacecraft , 2018, Advanced materials.

[38]  Kateryna Bazaka,et al.  Concept of a Magnetically Enhanced Vacuum Arc Thruster With Controlled Distribution of Ion Flux , 2017, IEEE Transactions on Plasma Science.

[39]  Michael Keidar,et al.  Effective Control of the Arc Discharge-Generated Plasma Jet by Smartly Designed Magnetic Fields , 2014, IEEE Transactions on Plasma Science.

[40]  K. Komvopoulos,et al.  Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization. , 2008, The Review of scientific instruments.

[41]  Shenli Jia,et al.  Vacuum arc under axial magnetic fields: experimental and simulation research , 2014 .

[42]  Oleg Baranov,et al.  Current Distribution on the Substrate in a Vacuum Arc Deposition Setup , 2008 .

[43]  X. Tan,et al.  Time and space resolved Langmuir probe measurements of a pulsed vacuum arc plasma , 2010 .

[44]  Michael Keidar,et al.  Plasma-chemical synthesis, structure and photoluminescence properties of hybrid graphene nanoflake–BNCO nanowall systems , 2016 .

[45]  E. Oks,et al.  Charge state, angular distribution, and kinetic energy of ions from multicomponent-cathodes in vacuum arc devices , 2014 .

[46]  C. Law,et al.  Influence of Cathode Shape on Vacuum Arc Thruster Performance and Operation , 2015, IEEE Transactions on Plasma Science.

[47]  Walter Wuensch,et al.  From Field Emission to Vacuum Arc Ignition: A New Tool for Simulating Copper Vacuum Arcs , 2015 .

[48]  M. M. A. Yajadda,et al.  Gold nanoresistors with near-constant resistivity in the cryogenic-to-room temperature range , 2011 .

[49]  M. Keidar,et al.  Macroparticle separation and plasma collimation in positively biased ducts in filtered vacuum arc deposition systems , 1999 .

[50]  D. Bootkul,et al.  Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc (FCVA) technique , 2014 .

[51]  A. Anders,et al.  High-resolution imaging of vacuum arc cathode spots , 1996 .

[52]  D. Mckenzie,et al.  Electrodeless plasma thrusters for spacecraft: a review , 2017 .

[53]  Isak I. Beilis,et al.  The nature of high voltage initiation of an electrical arc in a vacuum , 2010 .

[54]  R. New,et al.  Influence of steering magnetic field on the time-resolved plasma chemistry in cathodic arc discharges , 2004 .

[55]  A. Anders,et al.  Extractable, elevated ion charge states in the transition regime from vacuum sparks to high current vacuum arcs , 2008 .

[56]  Jin S. Kang,et al.  Effects of metallic plasma thruster plume on solar cells , 2018, 2018 IEEE Aerospace Conference.

[57]  H. Takikawa,et al.  Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films , 2007, IEEE Transactions on Plasma Science.

[58]  E. Oks,et al.  Multiple ionization of vacuum-arc-generated metal ions in a magnetic trap heated by high-power microwave radiation , 2007 .

[59]  Isak I. Beilis,et al.  Vacuum arc cathode spot grouping and motion in magnetic fields , 2002 .

[60]  J. E. Jenkins,et al.  Cathode spot motion in high current vacuum arcs on copper electrodes , 1975 .

[61]  M. Keidar,et al.  Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc , 1998 .

[62]  I. Beilis Physics of Cathode Phenomena in a Vacuum Arc With Respect to a Plasma Thruster Application , 2015, IEEE Transactions on Plasma Science.

[63]  S. Gorbunov,et al.  Flow of multiple charged accelerated metal ions from low-inductance vacuum spark , 2006 .

[64]  I. Aksenov,et al.  Plasma flux motion in a toroidal plasma guide , 1986 .

[65]  E. Oks,et al.  Measurements of the total ion flux from vacuum arc cathode spots , 2005, IEEE Transactions on Plasma Science.

[66]  D. Mckenzie,et al.  A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse , 2016 .

[67]  D. Fang Cathode spot velocity of vacuum arcs , 1982 .

[68]  A. Anders,et al.  Time dependence of vacuum arc parameters , 1993 .

[69]  A. Shashurin,et al.  Experimental study of plasma parameters in a vacuum arc with a hot refractory anode , 2009 .

[70]  A. Anders,et al.  Angularly resolved measurements of ion energy of vacuum arc plasmas , 2002 .

[71]  Mohan V. Jacob,et al.  Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV , 2017, Scientific Reports.

[72]  Isak I. Beilis,et al.  Thin-Film Deposition With Refractory Materials Using a Vacuum Arc , 2015, IEEE Transactions on Plasma Science.

[73]  S. Goldsmith,et al.  Fluid model of current-carrying and magnetized fully ionized plasma confined by two coaxial cylinder electrodes , 2008 .

[74]  J. Rosen,et al.  Ion velocities in direct current arc plasma generated from compound cathodes , 2013 .

[75]  A. Anders,et al.  Transport of vacuum arc plasmas through magnetic macroparticle filters , 1995 .

[76]  J. R. Pierce,et al.  Scientific foundations of vacuum technique , 1949 .

[77]  A. Anders,et al.  The fractal nature of vacuum arc cathode spots , 2005, IEEE Transactions on Plasma Science.

[78]  S. Goldsmith,et al.  Interaction of a vacuum arc plasma beam with an obstacle positioned normal to the plasma flow , 2003 .

[79]  Mingzhe Rong,et al.  Numerical simulation of vacuum arc under different axial magnetic fields , 2005 .

[80]  R. Franz,et al.  Time-resolved ion energy and charge state distributions in pulsed cathodic arc plasmas of Nb−Al cathodes in high vacuum , 2018 .

[81]  Kateryna Bazaka,et al.  Miniaturized Plasma Sources: Can Technological Solutions Help Electric Micropropulsion? , 2018, IEEE Transactions on Plasma Science.

[82]  E. Oks,et al.  Cathodic Arcs: Fractal Voltage and Cohesive Energy Rule , 2005 .

[83]  P. Chu,et al.  Control of cathodic arc spot motion under external magnetic field , 2013 .

[84]  S. Goldsmith Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties , 2006 .

[85]  I. A. Krinberg,et al.  Pinch effect in vacuum arc plasma sources under moderate discharge currents , 2002 .

[86]  E. Hantzsche,et al.  Mysteries of the arc cathode spot: A retrospective glance , 2003 .

[87]  S. Jia,et al.  Influence of AMF on the Expansion Speed of Cathode Spots in High-Current Triggered Vacuum Arc , 2013, IEEE Transactions on Plasma Science.

[88]  E. Oks,et al.  Ion charge state distributions in high current vacuum arc plasmas in a magnetic field , 1996 .

[89]  Stéphane Mazouffre,et al.  Electric propulsion for satellites and spacecraft: established technologies and novel approaches , 2016 .

[90]  A. Anders,et al.  A Theoretical Analysis of Vacuum Arc Thruster and Vacuum Arc Ion Thruster Performance , 2008, IEEE Transactions on Plasma Science.

[91]  A. V. Phelps,et al.  Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N2 and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV , 1991 .

[92]  J. Schneider,et al.  Charge-state-resolved ion energy distributions of aluminum vacuum arcs in the absence and presence of a magnetic field , 2005 .

[93]  Oleg Baranov,et al.  Process Intensification in Vacuum Arc Deposition Setups , 2009 .

[94]  A. Anders,et al.  Ion energy distribution functions of vacuum arc plasmas , 2002 .

[95]  D. Sanders,et al.  Design of vacuum arc-based sources , 1996 .

[96]  Yuan Wang,et al.  Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc , 2018 .

[97]  Yan Shen,et al.  Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers , 2018 .

[98]  Y Wang,et al.  Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. , 2018, Nanoscale.

[99]  Kwang-Ryeol Lee,et al.  Effect of magnetic field structure near cathode on the arc spot stability of filtered vacuum arc source of graphite , 2000 .

[100]  John Bell,et al.  From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring , 2018 .

[101]  Annemie Bogaerts,et al.  Computer modelling of magnetron discharges , 2009 .

[102]  Isak I. Beilis,et al.  The vacuum arc cathode spot and plasma jet: Physical model and mathematical description , 2003 .

[103]  A. E. Robson The motion of a low-pressure arc in a strong magnetic field , 1978 .

[104]  Oleg Baranov,et al.  Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge , 2009 .

[105]  I. Beilis,et al.  Measurement of the Vacuum Arc Plasma Force , 2009, IEEE Transactions on Plasma Science.

[106]  S. A. Leonov,et al.  Features of the process of vacuum-arc produced Ti-plasma flux deposition under gas pressure of 1 to 10 Pa , 2015 .

[107]  Isak I. Beilis,et al.  State of the theory of vacuum arcs , 2001 .

[108]  Mohan V. Jacob,et al.  Synthesis of radio frequency plasma polymerized non-synthetic Terpinen-4-ol thin films , 2009 .

[109]  Jinghua Fang,et al.  Effect of Ion Current Density on the Properties of Vacuum Arc-Deposited TiN Coatings , 2013, IEEE Transactions on Plasma Science.

[110]  Kostya Ostrikov,et al.  Effective control of ion fluxes over large areas by magnetic fields : from narrow beams to highly uniform fluxes , 2009 .

[111]  Experimental Characterization of the Inline-Screw-Feeding Vacuum-Arc-Thruster Operation , 2017, IEEE Transactions on Plasma Science.

[112]  Alireza Khakpour,et al.  Spectroscopic Investigation of a Cu—Cr Vacuum Arc , 2015, IEEE Transactions on Plasma Science.

[113]  M. Keidar,et al.  Optimization of discharge triggering in micro-cathode vacuum arc thruster for CubeSats , 2018, Plasma Sources Science and Technology.

[114]  I Levchenko,et al.  Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials , 2018, Nature Communications.

[115]  Kateryna Bazaka,et al.  Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation , 2018, Applied Physics Reviews.

[116]  E. Oks,et al.  Vacuum arc ion sources-a brief historical review , 1997 .

[117]  E. Oks,et al.  Angular Distribution of Ions in a Vacuum Arc Plasma With Single-Element and Composite Cathodes , 2013, IEEE Transactions on Plasma Science.

[118]  J. Daalder Components of cathode erosion in vacuum arcs , 1976 .

[119]  P. D. Swift,et al.  Optimizing the triggering mode for stable operation of a pulsed cathodic arc deposition system , 2003 .

[120]  D.F. Alferov,et al.  Study of the Effect of a Vacuum Arc Current Interruption in a Nonuniform Magnetic Field , 2009, IEEE Transactions on Plasma Science.

[121]  Michael Keidar,et al.  Influence of an electrical field on the macroparticle size distribution in a vacuum arc , 1999 .

[122]  M. Keidar,et al.  Macroparticle distribution in a quarter-torus plasma duct of a filtered vacuum arc deposition system , 1997 .

[123]  I. Beilis Vacuum arc cathode spot motion in oblique magnetic fields: An interpretation of the Robson experiment , 2016 .

[124]  E. Oks,et al.  Generation of multiply charged refractory metals in an electron-cyclotron resonant discharge in a direct magnetic trap , 2005 .

[125]  K. Bazaka,et al.  Surface modification of biomaterials for biofilm control , 2015 .

[126]  Isak I. Beilis Cathode Spot Development on a Bulk Cathode in a Vacuum Arc , 2013 .

[127]  George Teel,et al.  Discharge ignition in the micro-cathode arc thruster , 2017 .

[128]  Jinghua Fang,et al.  Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes , 2014, Science and technology of advanced materials.

[129]  Hitoshi Kuninaka,et al.  Explore space using swarms of tiny satellites , 2018, Nature.

[130]  Mohan V. Jacob,et al.  Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. , 2016, Chemical reviews.

[131]  D. Mckenzie,et al.  Fuel Selection for Pulsed Cathodic Arc Thrusters , 2012 .

[132]  D. Mckenzie,et al.  Cathode-Spot Dynamics in a High-Current Pulsed Arc: A Noise Study , 2009, IEEE Transactions on Plasma Science.

[133]  Jinghua Fang,et al.  Dense Plasmas in Magnetic Traps: Generation of Focused Ion Beams With Controlled Ion-to-Neutral Flux Ratios , 2014, IEEE Transactions on Plasma Science.

[134]  A. Anders Energetic deposition using filtered cathodic arc plasmas , 2002 .

[135]  I. Brown,et al.  Cathode erosion rates in vacuum-arc discharges , 1990 .

[136]  Uroš Cvelbar,et al.  Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach , 2018 .

[137]  A. Anders A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS) , 2014 .

[138]  Shailesh Kumar,et al.  Low-pressure planar magnetron discharge for surface deposition and nanofabrication , 2010 .

[139]  S. Mazouffre,et al.  Characteristics and Performances of a 100-W Hall Thruster for Microspacecraft , 2018, IEEE Transactions on Plasma Science.

[140]  Shailesh Kumar,et al.  Magnetic control of breakdown : toward energy-efficient hollow-cathode magnetron discharges , 2011 .

[141]  A. Anders The evolution of ion charge states in cathodic vacuum arc plasmas: a review , 2012 .

[142]  M. Benilov,et al.  The double sheath on cathodes of discharges burning in cathode vapour , 2010 .

[143]  M. B. Schulman,et al.  On the effect of an axial magnetic field on the high-current vacuum arc , 2000 .

[144]  Jinghua Fang,et al.  Multipurpose nanoporous alumina–carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma CVD , 2014 .

[145]  Michael Keidar,et al.  Mars Colonization: Beyond Getting There , 2018, Global challenges.

[146]  J. Vetter 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications , 2014 .

[147]  C. Lan,et al.  Mode Transition of Vacuum Arc Discharge and Its Effect on Ion Current , 2014 .

[148]  K. Ostrikov,et al.  Thermodynamical and plasma-driven kinetic growth of high-aspect-ratio nanostructures: effect of hydrogen termination , 2009 .

[149]  Elena P Ivanova,et al.  Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. , 2011, Acta biomaterialia.

[150]  Michael Keidar,et al.  Circular periodic motion of plasma produced by a small-scale vacuum arc , 2011 .

[151]  A. Anders Cathodic Arcs: From Fractal Spots to Energetic Condensation , 2008 .

[152]  R. Z. Sim,et al.  Precise Calibration of Propellant Flow and Forces in Specialized Electric Propulsion Test System , 2018, IEEE Transactions on Plasma Science.

[153]  I. Kleberg,et al.  Plasma Jets as the Cause of the Retrograde Motion of Arc Cathode Spots in Vacuum , 2000 .

[154]  Michael Keidar,et al.  Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis , 2017 .

[155]  V. Nemchinsky Influence of Ambient Gas Pressure on Cathode Erosion Rate in a Vacuum Arc , 2019, IEEE Transactions on Plasma Science.

[156]  S. Sharma,et al.  Effects of annealing temperature on structural and electrical properties of indium oxide thin films prepared by thermal evaporation , 2015 .

[157]  Jochen Schein,et al.  Inductive energy storage driven vacuum arc thruster , 2002 .

[158]  Raymond L. Boxman,et al.  Vacuum arc deposition devices , 2006 .

[159]  I. Beilis,et al.  Magnetic control, in vacuum arc deposition - a review , 2004, XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV..

[160]  Igor Levchenko,et al.  Plasma-assisted self-organized growth of uniform carbon nanocone arrays , 2007 .

[161]  J. W. M. Lim,et al.  Automated Integrated Robotic Systems for Diagnostics and Test of Electric and Micropropulsion Thrusters , 2018, IEEE Transactions on Plasma Science.

[162]  Shenli Jia,et al.  Observation and investigation of vacuum arc under various distributed axial magnetic fields , 2001 .

[163]  R. Robson,et al.  Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas , 2009 .

[164]  I. Beilis,et al.  Cathode spot motion in a vacuum arc with a long roof-shaped cathode , 2014, 2014 International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV).

[165]  D. Mckenzie,et al.  A pulsed cathodic arc spacecraft propulsion system , 2009 .

[166]  Jinghua Fang,et al.  Control of ion density distribution by magnetic traps for plasma electrons , 2012 .

[167]  André Anders,et al.  Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field , 2002 .

[168]  M. Artamonov,et al.  Generation of multiply charged ions from a cathode jet of a low-energy vacuum spark , 2001 .