BaMg1/3Nb2/3O3–Mg4Nb2O9 composite microwave ceramics with high Q-factor and low sintering temperature

Abstract Revised thermodynamic equilibrium in the BaO–MgO–Nb 2 O 5 pseudo-ternary system has lead to development of a novel composite dielectric material with dielectric constant, ɛ ′ = 25.5, efficacy factor, Q  ×  f  = 160 THz, and temperature coefficient of the resonant frequency, τ f  = +0.5 ppm/K. The material shows one of the highest Q -factors among the Ta-free microwave dielectric resonators. It also does not contain volatile Zn and Co elements. Other important property of the title compound is low sintering temperature of 1320 °C which significantly reduces the processing cost.

[1]  D. Suvorov,et al.  Ag(Nb,Ta)O3-based ceramics with suppressed temperature dependence of permittivity , 2001 .

[2]  Chengxiong Huang,et al.  Microwave Dielectric Properties of Sintered Alumina Using Nano‐Scaled Powders of α Alumina and TiO2 , 2007 .

[3]  H. Ogawa,et al.  Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss , 2003 .

[4]  D. Iddles,et al.  Relationship between microwave and lattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectric ceramics , 2004 .

[5]  F. Izumi,et al.  A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites , 2000 .

[6]  T. C. Ozawa,et al.  Phase equilibria in the BaO–MgO–Ta2O5 system , 2009 .

[7]  Robert T. DeHoff,et al.  Thermodynamics in Materials Science , 1993 .

[8]  K. Kakimoto,et al.  Controlled Temperature Coefficient of Resonant Frequency of Al2O3-TiO2 Ceramics by Annealing Treatment , 2004 .

[9]  S. Nomura,et al.  Ba(Zn1/3Nb2/3)O3–Sr(Zn1/3Nb2/3)O3 Solid Solution Ceramics with Temperature-Stable High Dielectric Constant and Low Microwave Loss , 1982 .

[10]  T. Kolodiazhnyi,et al.  Dielectric and Relaxor Properties of Ba9MNb14O45 Ceramics , 2012 .

[11]  H. Ogawa,et al.  Microwave Dielectric Properties of xMgO–(1 - x)B2O3 Ceramics , 2009 .

[12]  H. Ogawa,et al.  Low-Temperature Sintering and Microstructure of Mg4(Nb2-xVx)O9 Microwave Dielectric Ceramic by V Substitution for Nb , 2003 .

[13]  Chengxiong Huang,et al.  Improved High-Q Dielectric Resonator Sintered at Low Firing Temperature , 1995 .

[14]  Y. Sakka,et al.  Novel Incipient Ferroelectrics Based on Ba4MNbxTa10-xO30 where M = Zn, Mg, Co, Ni , 2011 .

[15]  N. Alford,et al.  Temperature and frequency dependence of dielectric loss of Ba(Mg1/3Ta2/3)O3 microwave ceramics , 2010 .

[16]  T. Taniguchi,et al.  Development of Al2O3–TiO2 composite ceramics for high-power millimeter-wave applications , 2009 .

[17]  A. Petric,et al.  Synthesis and dielectric properties of barium tantalates and niobates with complex perovskite structure , 2002 .

[18]  N. Alford,et al.  Microwave dielectric loss in oxides: Theory and experiment , 2004 .

[19]  D. Suvorov,et al.  Characterization of CaTiO3-NdAlO3 dielectric ceramics , 2003 .

[20]  I. Reaney,et al.  Niobate-based microwave dielectrics suitable for third generation mobile phone base stations , 2001 .

[21]  Tetsuro Nakamura,et al.  Dielectric Behavior of (1-x)LaAlO3–xSrTiO3 Solid Solution System at Microwave Frequencies , 1998 .

[22]  A. G. Belous,et al.  Effect of preparation conditions on cation ordering and dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics , 2002 .

[23]  Y. Sakka,et al.  Novel Incipient Ferroelectrics Based on Ba4MNbxTa10–xO30where M = Zn, Mg, Co, Ni , 2011 .

[24]  D. Suvorov,et al.  Microwave composite dielectrics based on magnesium titanates , 2007 .

[25]  T. Kolodiazhnyi,et al.  Intrinsic limit of dielectric loss in several Ba(B1∕3′B2∕3″)O3 ceramics revealed by the whispering-gallery mode technique , 2005 .

[26]  H. Tamura,et al.  High Q dielectric resonator material with low dielectric constant for millimeter-wave applications , 2006 .