A mass formula for negacyclic codes of length 2k and some good negacyclic codes over ℤ4+uℤ4$\mathbb {Z}_{4}+u\mathbb {Z}_{4}$
暂无分享,去创建一个
[1] Taher Abualrub,et al. On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.
[2] Rama Krishna Bandi,et al. Negacyclic codes of length 2k over , 2017, Int. J. Comput. Math..
[3] Karl-Heinz Zimmermann. On generalizations of repeated-root cyclic codes , 1996, IEEE Trans. Inf. Theory.
[4] Rama Krishna Bandi,et al. Negacyclic codes over Z4+uZ4 , 2014, ArXiv.
[5] Suat Karadeniz,et al. Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..
[6] Thomas Blackford,et al. Negacyclic Codes Over of Even Length , 2003 .
[7] Jacques Wolfmann,et al. Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.
[8] H. Q. Dinh,et al. Complete Distances of All Negacyclic Codes of Length $2^{s}$ Over $\BBZ _{2^{a}}$ , 2007, IEEE Transactions on Information Theory.
[9] Taher Abualrub,et al. Cyclic Codes of Length 2e Over Z4 , 2003, Discret. Appl. Math..
[10] Graham H. Norton,et al. On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.
[11] J. Wolfman. Negacyclic and cyclic codes over Z/sub 4/ , 1999 .
[12] Hai Q. Dinh,et al. Complete Distances of All Negacyclic Codes of Length Over , 2007 .
[13] AbualrubT.,et al. On the generators of Z4 cyclic codes of length 2e , 2006 .
[14] Steven T. Dougherty,et al. Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..
[15] Bahattin Yildiz,et al. On cyclic codes over ℤ4 + uℤ4 and their ℤ4-images , 2014, Int. J. Inf. Coding Theory.
[16] Nuh Aydin,et al. A Database of Z4 Codes , 2015, ArXiv.
[17] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[18] Taher Abualrub,et al. On the Generators of Cyclic Codes of Length , 2003 .
[19] Thomas Blackford. Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..
[20] H. Q. Dinh,et al. Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.
[21] Elwyn R. Berlekamp. Negacyclic codes for the Lee metric , 1966 .
[22] James L. Massey,et al. On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.
[23] Cheong Boon Soh,et al. A note on the q-ary image of a qm-ary repeated-root cyclic code , 1997, IEEE Trans. Inf. Theory.
[24] Rama Krishna Bandi,et al. Cyclic codes over ℤ4 + uℤ4 , 2015, 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA).
[25] Sergio R. López-Permouth,et al. Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.