A mass formula for negacyclic codes of length 2k and some good negacyclic codes over ℤ4+uℤ4$\mathbb {Z}_{4}+u\mathbb {Z}_{4}$

In this paper, we study negacyclic codes of length 2k over the ring R=ℤ4+uℤ4$R=\mathbb {Z}_{4}+u\mathbb {Z}_{4}$, u2 = 0. We have obtained a mass formula for the number of negacyclic of length 2k over R. We have also determined the number of self-dual negacyclic codes of length 2k over R. This study has been further generalized to negacyclic codes of any even length using discrete Fourier transform approach over R. We have conducted an exhaustive search and obtained some new ℤ4$\mathbb {Z}_{4}$-linear codes with good parameters.

[1]  Taher Abualrub,et al.  On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.

[2]  Rama Krishna Bandi,et al.  Negacyclic codes of length 2k over , 2017, Int. J. Comput. Math..

[3]  Karl-Heinz Zimmermann On generalizations of repeated-root cyclic codes , 1996, IEEE Trans. Inf. Theory.

[4]  Rama Krishna Bandi,et al.  Negacyclic codes over Z4+uZ4 , 2014, ArXiv.

[5]  Suat Karadeniz,et al.  Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..

[6]  Thomas Blackford,et al.  Negacyclic Codes Over of Even Length , 2003 .

[7]  Jacques Wolfmann,et al.  Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.

[8]  H. Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length $2^{s}$ Over $\BBZ _{2^{a}}$ , 2007, IEEE Transactions on Information Theory.

[9]  Taher Abualrub,et al.  Cyclic Codes of Length 2e Over Z4 , 2003, Discret. Appl. Math..

[10]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[11]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[12]  Hai Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length Over , 2007 .

[13]  AbualrubT.,et al.  On the generators of Z4 cyclic codes of length 2e , 2006 .

[14]  Steven T. Dougherty,et al.  Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..

[15]  Bahattin Yildiz,et al.  On cyclic codes over ℤ4 + uℤ4 and their ℤ4-images , 2014, Int. J. Inf. Coding Theory.

[16]  Nuh Aydin,et al.  A Database of Z4 Codes , 2015, ArXiv.

[17]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[18]  Taher Abualrub,et al.  On the Generators of Cyclic Codes of Length , 2003 .

[19]  Thomas Blackford Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..

[20]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[21]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[22]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.

[23]  Cheong Boon Soh,et al.  A note on the q-ary image of a qm-ary repeated-root cyclic code , 1997, IEEE Trans. Inf. Theory.

[24]  Rama Krishna Bandi,et al.  Cyclic codes over ℤ4 + uℤ4 , 2015, 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA).

[25]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.