Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt

Abstract The massive sulfide deposits of the Iberian Pyrite Belt are grouped in different styles of mineralization, reflecting the formation in contrasting geological settings. The shale-hosted orebodies of the southern part of the belt are interpreted as formed in sub-oxic to anoxic third order basins. Here, upwelling deep sulfur-depleted fluids mixed with modified seawater rich in biogenically reduced sulfur, leading to the precipitation of the massive sulfides on the seafloor. These deposits share features such as the intermediate to high aspect ratio (typically 10 to 20), the usually large tonnages, the stratiform morphology, an absence of major metal refining, the abundance of sedimentary structures, and the absence of sulfates and the common presence of siderite-rich facies. Most of these deposits (Aznalcollar–Los Frailes, Sotiel–Migollas, Valverde, Tharsis and Neves Corvo) formed in a short time span in the uppermost Devonian indicating that there was a restricted epoch of vigorous hydrothermal activity that favored the development of long-lived and stable hydrothermal systems. Some of the Rio Tinto massive sulfides (San Dionisio, Filon Sur) are interpreted as of similar origin, but somewhat younger (Early Carboniferous). Most of the massive sulfides in the northern part of the Belt are hosted by a felsic volcanic sequence with only minor mudstone as is the case of Concepcion, San Platon, Aguas Tenidas Este, San Miguel, La Zarza, Aljustrel, or Filon Norte in Rio Tinto. The orebodies are hosted by massive or volcaniclastic, vitriclast- or pumice-rich, felsic rocks. They share some primary features including sharp transgressive contacts with the host rocks, the presence of a pervasive wrapping hydrothermal alteration, the variable aspect ratio, the major metal refining and the abundance of sulfates. These deposits are interpreted as formed by the stratabound replacement of porous or reactive volcanic rocks. Ore precipitation probably took place by mixing of the deep fluids with modified seawater with variably reduced sulfur. Deposits such as usually have lower tonnages than the exhalative ones. The stable ( δ 18 O fluid , 0–8‰; δ D fluid , − 45‰ to 5‰) and radiogenic isotope geochemistry ( 87 Sr/ 86 Sr, 0.7071 to 0.7221), as well the composition of the fluid inclusions (avg. 3 to 12 wt.% NaCl equiv.), are compatible with the dominant derivation of the deep fluids and metals from the underlying siliciclastic PQ Group. Diagenetic evolution of the sedimentary sequence triggered with convective flow and focusing of hydrothermal fluids along major faults in a regime of high geothermal gradients can account for the formation of this metallogenic province.

[1]  B. Spiro,et al.  The Filon Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulphide in a thin-skinned tectonic belt , 1997 .

[2]  G. K. Strauss,et al.  Gold mineralisations in the SW Iberian Pyrite Belt , 1990 .

[3]  C. Stanley Mineral deposits : processes to processing , 1989 .

[4]  R. Ballard,et al.  Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise , 1979, Nature.

[5]  J. Leroy,et al.  Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France , 1990 .

[6]  M. Hannington,et al.  The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada , 1999 .

[7]  C. Quesada,et al.  A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt , 1997 .

[8]  M. Mottl,et al.  Hydrothermal alteration of basalt by seawater under seawater-dominated conditions , 1982 .

[9]  W. Fyfe,et al.  Giant pyritic base-metal deposits: the example of Feitais (Aljustrel, Portugal) , 1988 .

[10]  J. Matas,et al.  Datación palinoestratigráfica del volcanismo en la sección de la Ribera del jarama (Faja Pirítica Ibérica, Zona Surportuguesa) , 2002 .

[11]  S. Sheppard Characterization and isotopic variations in natural waters , 1986 .

[12]  R. Harmon,et al.  Fluid inclusion and stable isotope evidence for the origin of mineralizing fluids in south-west England , 1991, Mineralogical Magazine.

[13]  P. Nehlig Salinity of oceanic hydrothermal fluids: a fluid inclusion study , 1991 .

[14]  H. Sakai,et al.  The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation , 1980 .

[15]  David I. Groves,et al.  Regional alteration systems associated with volcanogenic Massive Sulfide Mineralization at Panorama, Pilbara, Western Australia , 1998 .

[16]  Gabriel Ruiz de Almodóvar Sel,et al.  Estudio isotópico con el sistema Re-Os de las mineralizaciones de sulfuros de la Faja Pirítica Ibérica. , 1999 .

[17]  M. Hannington,et al.  Classification of Volcanic-Associated Massive Sulfide Deposits Based on Host-Rock Composition , 1997 .

[18]  D. Beaty,et al.  An oxygen isotope study of the Kidd Creek, Ontario, volcanogenic massive sulfide deposits; evidence for a high 18 O ore fluid , 1988 .

[19]  S. Scott,et al.  The role of subvolcanic sills in the generation of massive sulfide deposits , 1981 .

[20]  C. Ryan,et al.  Evolution and source of ore fluids in the stringer system, Hellyer VHMS deposit, Tasmania, Australia: evidence from fluid inclusion microthermometry and geochemistry , 1996 .

[21]  L. Cathles,et al.  Thermal constraints on the formation of mississippi valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis , 1983 .

[22]  J. M. Moore,et al.  Seismic pumping—a hydrothermal fluid transport mechanism , 1975, Journal of the Geological Society.

[23]  R. Kerrich,et al.  Sea water basalt interaction in spilites from the Iberian Pyrite Belt , 1980 .

[24]  M. Barton,et al.  An amagmatic origin of carlin-type gold deposits , 1997 .

[25]  J. Lowenstern,et al.  Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase , 1991, Science.

[26]  R. Cas,et al.  Subaqueous, rhyolitic dome-top tuff cones: a model based on the Devonian Bunga Beds, southeastern Australia and a modern analogue , 1990 .

[27]  D. Cole,et al.  Oxygen isotope fractionation between chlorite and water from 170 to 350°C: a preliminary assessment based on partial exchange and fluid/rock experiments , 1999 .

[28]  R. Zierenberg,et al.  Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea , 1983 .

[29]  R. Barnett,et al.  The Mattagami Lake Mine Archean Zn-Cu sulfide deposit, Quebec; hydrothermal coprecipitation of talc and sulfides in a sea-floor brine pool; evidence from geochemistry, 18 O/ 16 O, and mineral chemistry , 1983 .

[30]  I. Yusta,et al.  Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain) , 2000 .

[31]  U. Fehn The evolution of low-temperature convection cells near spreading centers; a mechanism for the formation of the Galapagos mounds and similar manganese deposits , 1986 .

[32]  F. Barriga,et al.  High 18 O ore-forming fluids in volcanic-hosted base metal massive sulfide deposits; geologic, 18 O/ 16 O, and D/H evidence from the Iberian pyrite belt; Crandon, Wisconsin; and Blue Hill, Maine , 1986 .

[33]  H. Barnes,et al.  Mineralogy, Geochemistry, and Ore Genesis of Hydrothermal Sediments from the Atlantis II Deep, Red Sea , 1983 .

[34]  M. Hannington,et al.  High sulfidation deposits in the volcanogenic massive sulfide environment , 1996 .

[35]  E. Marcoux Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt , 1997 .

[36]  Y. Deschamps,et al.  Chert in the Iberian Pyrite Belt , 1997 .

[37]  F. Palomero Caracteres geológicos y relaciones morfológicas y genéticas de los yacimientos del "anticlinal de Rio Tinto" , 1980 .

[38]  J. Walshe,et al.  The formation of the volcanic-hosted massive sulfide ore deposit at Rosebery, Tasmania , 1981 .

[39]  K. Meyer,et al.  Trondhjemites, tonalites and diorites in the South Portuguese Zone and their relations to the vulcanites and mineral deposits of the Iberian Pyrite Belt , 1987 .

[40]  Yu Jinjie,et al.  Origin of the Gacun Volcanic-Hosted Massive Sulfide Deposit in Sichuan, China: Fluid Inclusion and Oxygen Isotope Evidence , 2001 .

[41]  D. Beaty,et al.  Some petrologic and oxygen isotopic relationships in the Amulet Mine, Noranda, Quebec, and their bearing on the origin of Archean massive sulfide deposits , 1982 .

[42]  M. Russell,et al.  Genesis of the Silvermines zinc-lead-barite deposit, Ireland; fluid inclusion and stable isotope evidence , 1987 .

[43]  R. Large,et al.  Zn-Pb-Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide deposition , 2004 .

[44]  R. Mathur,et al.  Age and sources of the ore at Tharsis and Rio Tinto, Iberian Pyrite Belt, from Re-Os isotopes , 1999 .

[45]  W. Fyfe,et al.  Research paperGiant pyritic base-metal deposits: The example of Feitais (Aljustrel, Portugal) , 1988 .

[46]  R. Sainty Shallow-Water Stratigraphy at the Mount Chalmers Volcanic-Hosted Massive Sulfide Deposit, Queensland, Australia , 1992 .

[47]  F. Barriga,et al.  Extreme 18O-enriched volcanics and 18O-evolved marine water, Aljustrel, Iberian Pyrite Belt: transition from high to low Rayleigh number convective regimes , 1984 .

[48]  F. Barriga,et al.  Bimodal Siliciclastic Systems—The Case of The Iberian Pyrite Belt , 1997 .

[49]  E. Pascual,et al.  Magmatism in the Iberian Pyrite Belt: petrological constraints on a metallogenic model , 1997 .

[50]  M. Hannington,et al.  The internal structure of an active sea-floor massive sulphide deposit , 1995, Nature.

[51]  K. Kase,et al.  Ore mineralogy and sulfur isotope study of the massive sulfide deposit of Filon Norte, Tharsis Mine, Spain , 1990 .

[52]  A. Arribas,et al.  Mineralogy and geochemistry of the Masa Valverde blind massive sulphide deposit, Iberian Pyrite Belt (Spain) , 2002 .

[53]  L. Cathles An analysis of the cooling of intrusives by ground-water convection which includes boiling , 1977 .

[54]  R. Yund,et al.  Oxygen diffusion in quartz , 1984 .

[55]  E. Lopera,et al.  Geochemical and geologic study of the volcano-sedimentary sulfide orebody of La Zarza, Province of Huelva, Spain , 1981 .

[56]  R. D. Dallmeyer,et al.  Pre-Mesozoic Geology of Iberia , 1991 .

[57]  M. Hannington,et al.  Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems , 1998 .

[58]  D. Alderton,et al.  A fluid inclusion and stable isotope study of 200 Ma of fluid evolution in the Galway Granite, Connemara, Ireland , 1997 .

[59]  J. Hanor Reactive transport involving rock-buffered fluids of varying salinity , 2001 .

[60]  R. Large,et al.  Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn–Pb–Ag deposits, 1. Lady Loretta Deposit, Queensland , 1998 .

[61]  E. Petersen Tin in volcanogenic massive sulfide deposits; an example from the Geco Mine, Manitouwadge District, Ontario, Canada , 1986 .

[62]  J. T. Oliveira,et al.  Stratigraphy of the tectonically imbricated lithological succession of the Neves Corvo mine area, Iberian Pyrite Belt, Portugal , 2004 .

[63]  R. Sáez,et al.  The Iberian type of volcano-sedimentary massive sulphide deposits , 1999 .

[64]  P. Rona Hydrothermal mineralization at oceanic ridges , 1988 .

[65]  D. Kadko,et al.  The relationship of hydrothermal fluid composition and crustal residence time to maturity of vent fields on the Juan de Fuca Ridge , 1998 .

[66]  R. Moritz,et al.  Basement-hosted quartz-barite sulfide veins in the French Alps; a record of alpine tectonic fluid expulsion in the external crystalline massifs; structural, fluid inclusion, and isotope (S and Sr) evidences , 1999 .

[67]  D. Cassard,et al.  Geometry and genesis of feeder zones of massive sulphide deposits: constraints from the Rio Tinto ore deposit (Spain) , 1997 .

[68]  G. Faure Principles of isotope geology , 1977 .

[69]  María Carmen Moreno Garrido,et al.  Edad devónica (Struniense) de las mineralizaciones de Aznalcóllar (Faja Pirítica Ibérica) en base a palinología , 1996 .

[70]  Joan Martí,et al.  Magmatic Evolution and Tectonic Setting of the Iberian Pyrite Belt Volcanism , 1997 .

[71]  R. Large,et al.  Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania , 1996 .

[72]  W. Goodfellow,et al.  Reply: Sulphur isotope composition of the Brunswick No. 12 massive sulphide deposit, Bathurst Mining Camp, New Brunswick: implications for ambient environment, sulphur source, and ore genesis , 1999 .

[73]  Cc Gifkins,et al.  Textural and Chemical Characteristics of Diagenetic and Hydrothermal Alteration in Glassy Volcanic Rocks: Examples from the Mount Read Volcanics, Tasmania , 2001 .

[74]  D. Lentz Petrology, geochemistry, and oxygen isotope interpretation of felsic volcanic and related rocks hosting the Brunswick 6 and 12 massive sulfide deposits (Brunswick Belt), Bathurst mining camp, New Brunswick, Canada , 1999 .

[75]  A. Müller Geochemical expressions of anoxic conditions in Nordåsvannet, a land-locked fjord in western Norway , 2001 .

[76]  M. Cathelineau,et al.  Remobilisation of base metals and gold by Variscan metamorphic fluids in the south Iberian pyrite belt: evidence from the Tharsis VMS deposit , 2003 .

[77]  W. Casey,et al.  Oxygen, hydrogen, and sulfur isotope geochemistry of a portion of the West Shasta Cu-Zn district, California , 1982 .

[78]  M. Mottl,et al.  Isotopic exchange in mineral-fluid systems. II. Oxygen and hydrogen isotopic investigation of the experimental basalt-seawater system , 1987 .

[79]  A. Boyce,et al.  Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes , 2003 .

[80]  Ross R. Large,et al.  Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models , 1992 .

[81]  J. Pearce,et al.  The interrelationship between magmatic and ore-forming hydrothermal processes in the Oman ophiolite , 1985 .

[82]  Kaihui Yang,et al.  Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system , 1996, Nature.

[83]  J. M. Prada,et al.  Descripción geológica de los Yacimientos de Sotiel Coronada , 1996 .

[84]  A. Boyce,et al.  A new sulphur isotopic study of some Iberian Pyrite Belt deposits: evidence of a textural control on sulphur isotope composition , 1998 .

[85]  Mark D. Hannington,et al.  Polymetallic massive sulfides at the modern seafloor A review , 1995 .

[86]  C. Bethke Hydrologic constraints on the genesis of the Upper Mississippi Valley mineral district from Illinois Basin brines , 1986 .

[87]  R. Frischknecht,et al.  Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions , 1999 .

[88]  D. Graf Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines , 1982 .

[89]  L. Cathles A capless 350 degrees C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems , 1993 .

[90]  H. Gilg,et al.  Stable Isotope Geochemistry of Clay Minerals , 1996, Clay Minerals.

[91]  M. Doyle,et al.  Subsea-floor replacement in volcanic-hosted massive sulfide deposits , 2003 .

[92]  Hiroshi Ohmoto,et al.  Formation of volcanogenic massive sulfide deposits: The Kuroko perspective , 1996 .

[93]  Palmer,et al.  Mineral Deposits: Research and Exploration , 1997 .

[94]  Pisutha-Arnond Visut,et al.  Thermal history, and chemical and isotopic compositions of the ore-forming fluids responsible for the kuroko massive sulfide deposits in the Hokuroku District of Japan , 1983 .

[95]  R. Clayton,et al.  Oxygen isotopic fractionation in the system quartz-albite-anorthite-water , 1979 .

[96]  R. Large,et al.  Proterozoic stratiform sediment-hosted Zn-Pb-Ag deposits , 1998 .

[97]  J. Cann,et al.  A thermal balance model of the formation of sedimentary-exhalative lead-zinc deposits , 1987 .

[98]  P. Laznicka Quantitative Relationships among Giant Deposits of Metals , 1999 .

[99]  A. Sánchez,et al.  The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue , 1997 .

[100]  Y. Amelin,et al.  U–Pb Geochronology of VMS mineralization in the Iberian Pyrite Belt , 2002, Mineralium Deposita.

[101]  W. P. Pratt Mississippi Valley–type lead-zinc deposits , 1984 .

[102]  M. Marani,et al.  Shallow-water polymetallic sulfide deposits in the Aeolian island arc , 1997 .

[103]  E. Verdurmen,et al.  Sr isotopic homogenization through whole-rock systems under low-greenschist facies metamorphism in Carboniferous pyroclastics at Aljustrel (southern Portugal) , 1978 .

[104]  M. Javoy,et al.  Oxygen and hydrogen isotopes in the volcano-sedimentary complex of Huelva (Iberian Pyrite Belt): example of water circulation through a volcano-sedimentary sequence , 1988 .

[105]  J. Munhá Hercynian magmatism in the Iberian pyrite belt , 1983 .

[106]  R. Sáez,et al.  Evidence for catastrophism at the Famennian-Dinantian boundary in the Iberian Pyrite Belt , 1996, Geological Society, London, Special Publications.

[107]  Y. Kharaka,et al.  Stable carbon isotopes of HCO3− in oil-field waters—implications for the origin of CO2 , 1980 .

[108]  H. Ohmoto Stable isotope geochemistry of ore deposits , 1986 .

[109]  C. Tassinari,et al.  Multiple sources for ore-forming fluids in the Neves Corvo VHMS Deposit of the Iberian Pyrite Belt (Portugal): strontium, neodymium and lead isotope evidence , 2001 .

[110]  F. Barriga,et al.  The relationship between ore deposits and oblique tectonics: the SW Iberian Variscan Belt , 2002, Geological Society, London, Special Publications.

[111]  M. Chiaradia,et al.  Plumbotectonic Evolution of the Ossa Morena Zone, Iberian Peninsula:Tracing the Influence of Mantle-Crust Interaction in Ore-Forming Processes , 2004 .

[112]  C. Heinrich The chemistry of hydrothermal tin(-tungsten) ore deposition , 1990 .

[113]  A. Galley Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems , 2003 .

[114]  R. Rosenbauer,et al.  Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: Interaction of seawater with fayalite and magnetite at 200–350°C , 1981 .

[115]  W. Snyder,et al.  Textural and stable isotope studies of the Big Mike cupriferous volcanogenic massive sulfide deposit, Pershing County, Nevada , 1984 .

[116]  L. Land,et al.  Diagenetic history of Eocene Wilcox sandstones, South-Central Texas , 1986 .

[117]  J. Matas,et al.  Geocronología U/Pb del volcanismo ácido y granitoides de la Faja Pirítica Ibérica (Zona Surportuguesa) , 2002 .

[118]  D. Norton,et al.  Transport phenomena in hydrothermal systems; cooling plutons , 1977 .

[119]  C. Eastoe,et al.  A sulfur isotope study of volcanogenic massive sulfide deposits of the Eastern Black Sea province, Turkey , 1995 .

[120]  R. Sáez,et al.  U–Pb dating of stockwork zircons from the eastern Iberian Pyrite Belt , 1999, Journal of the Geological Society.

[121]  F. Tornos,et al.  Explanation for many of the unusual features of the massive sulfide deposits of the Iberian pyrite belt , 2002 .

[122]  R. Sáez,et al.  Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt , 1996 .

[123]  C. V. Raman,et al.  Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge , 1993 .

[124]  M. Hannington,et al.  Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait, Antarctica , 2004 .

[125]  R. Large,et al.  Evaluation of the source-rock control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania , 1992 .

[126]  G. Constantinou,et al.  Black smoker chimney fragments in Cyprus sulphide deposits , 1984, Nature.

[127]  C. Eastoe,et al.  Experiments on convection and their relevance to the genesis of massive sulphide deposits , 1987 .

[128]  K. D. Corbett New Mapping and Interpretations of the Mount Lyell Mining District, Tasmania: A Large Hybrid Cu-Au System with an Exhalative Pb-Zn Top , 2001 .

[129]  C. Boulter,et al.  The Iberian Pyrite Belt: a mineralized system dismembered by voluminous high‐level sills , 2001 .

[130]  W. Herrmann,et al.  The Spectrum of Ore Deposit Types, Volcanic Environments, Alteration Halos, and Related Exploration Vectors in Submarine Volcanic Successions: Some Examples from Australia , 2001 .

[131]  J. Madel,et al.  Geology of massive sulphide deposits in the Spanish-Portuguese Pyrite Belt , 1974 .

[132]  J. R. O'neil,et al.  Compilation of stable isotope fractionation factors of geochemical interest , 1977 .

[133]  E. Özsoy,et al.  Oceanography of the Black Sea: A review of some recent results , 1997 .

[134]  Grant Garven,et al.  Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 2, Quantitative results , 1984 .

[135]  Cecilio Quesada Ochoa Estructura del sector español de la Faja Pirítica: implicaciones para la exploración de yacimientos , 1996 .

[136]  M. Hannington,et al.  Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N , 2000 .

[137]  Shen-su Sun,et al.  Oxygen isotope evidence for the mixing of magmatic and meteoric waters during tin mineralization in the Mole Granite, New South Wales, Australia , 1987 .

[138]  D. Sangster Mississippi Valley-type and sedex lead-zinc deposits : a comparative examination , 1990 .

[139]  D. Williams,et al.  The Planes-San Antonio pyritic deposit of Rio Tinto, Spain: its nature, environment and genesis* , 1977, Geological Society, London, Special Publications.

[140]  A. Boyce,et al.  Ore depositional process in the Navan Zn-Pb deposit, Ireland , 1998 .

[141]  J. Munhá Metamorphic Evolution of the South Portuguese/Pulo Do Lobo Zone , 1990 .

[142]  G. Clayton,et al.  Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): a palynological approach , 2002, Journal of the Geological Society.

[143]  Y. Moëlo,et al.  Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt , 1996 .

[144]  W. Goodfellow,et al.  Genesis of Massive Sulfide Deposits at Sediment-Covered Spreading Centers , 1997 .

[145]  C. Moreno Postvolcanic Paleozoic of the Iberian Pyrite Belt: An Example of Basin Morphologic Control on Sediment Distribution in a Turbidite Basin , 1993 .

[146]  G. Garven A hydrogeologic model for the formation of the giant oil sands deposits of the Western Canada sedimentary basin , 1989 .

[147]  A. Boyce,et al.  BACTERIA WERE RESPONSIBLE FOR THE MAGNITUDE OF THE WORLD-CLASS HYDROTHERMAL BASE METAL SULFIDE OREBODY AT NAVAN, IRELAND , 2001 .

[148]  C. Martens,et al.  Sulfate reduction rates and low molecular weight fatty acid concentrations in the water column and surficial sediments of the Black Sea , 1995 .

[149]  F. Barriga,et al.  Metallogenesis in the Iberian Pyrite Belt , 1990 .

[150]  R. Rosenbauer,et al.  Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite , 1988 .

[151]  R. Sáez,et al.  Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain , 1997 .