Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature

We study functional inequalities for Markov chains on discrete spaces with entropic Ricci curvature bounded from below. Our main results are that when curvature is non-negative, but not necessarily positive, the spectral gap, the Cheeger isoperimetric constant and the modified logarithmic Sobolev constant of the chain can be bounded from below by a constant that only depends on the diameter of the space, with respect to a suitable metric. These estimates are discrete analogues of classical results of Riemannian geometry obtained by Li and Yau, Buser and Wang.

[1]  Ben Morris,et al.  Spectral gap for the zero range process with constant rate , 2004, math/0405161.

[2]  Max Fathi,et al.  Entropic Ricci curvature bounds for discrete interacting systems , 2015 .

[3]  M. Ledoux The concentration of measure phenomenon , 2001 .

[4]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[5]  M. Ledoux A simple analytic proof of an inequality by P. Buser , 1994 .

[6]  S. Yau,et al.  Ricci curvature and eigenvalue estimate on locally finite graphs , 2010 .

[7]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[8]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[9]  Karl-Theodor Sturm,et al.  Mass transportation and rough curvature bounds for discrete spaces , 2009 .

[10]  C. Villani Optimal Transport: Old and New , 2008 .

[11]  P. Buser A note on the isoperimetric constant , 1982 .

[12]  A. Mielke Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .

[13]  Xiaodong Wang,et al.  A remark on Zhong-Yang's eigenvalue estimate , 2010 .

[14]  Remarks on non-interacting conservative spin systems: The case of gamma distributions , 2009 .

[15]  N. Gozlan,et al.  From concentration to logarithmic Sobolev and Poincaré inequalities , 2011 .

[16]  F. Chung,et al.  Harnack inequalities for graphs with non-negative Ricci curvature , 2012, 1207.6612.

[17]  On the role of convexity in functional and isoperimetric inequalities , 2008, 0804.0453.

[18]  P. Tetali,et al.  Discrete Curvature and Abelian Groups , 2015, Canadian Journal of Mathematics.

[19]  F. Barthe,et al.  Mass Transport and Variants of the Logarithmic Sobolev Inequality , 2007, 0709.3890.

[20]  D. Bakry,et al.  Some New Results on Eigenvectors via Dimension, Diameter, and Ricci Curvature☆ , 2000 .

[21]  E. Milman Isoperimetric and Concentration Inequalities - Equivalence under Curvature Lower Bound , 2009, 0902.1560.

[22]  A. Mondino,et al.  Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds , 2015, 1505.02061.

[23]  Feng-Yu Wang,et al.  Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .

[24]  E. Milman On the role of convexity in isoperimetry, spectral gap and concentration , 2007, 0712.4092.

[25]  J. Maas,et al.  Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.

[26]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[27]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[28]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[29]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[30]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[31]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[32]  A. Mondino,et al.  Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.

[33]  M. Schmuckenschläger Curvature of Nonlocal Markov Generators , 1998 .

[34]  Hung-hsi Wu The Estimate of the First Eigenvalue of a Compact Riemannian Manifold , 1991 .

[35]  Paul-Marie Samson,et al.  Displacement convexity of entropy and related inequalities on graphs , 2012, Probability Theory and Related Fields.

[36]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[37]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[38]  Christian L'eonard On the convexity of the entropy along entropic interpolations , 2013, 1310.1274.

[39]  M. Ledoux From Concentration to Isoperimetry: Semigroup Proofs , 2011 .