Stubborn Sets for Model Checking the EF/AG Fragment of CTL

The general stubborn set approach to CTL model checking has the drawback that one either nds a stubborn set with only one enabled transition or one has to expand all enabled transitions This restriction does not apply in our approach to a fragment of CTL Fur thermore our reduction does not depend on the invisibility of transitions in a stubborn set

[1]  Antti Valmari,et al.  Stubborn set methods for process algebras , 1997, Partial Order Methods in Verification.

[2]  Johan Lewi,et al.  A Linear Local Model Checking Algorithm for CTL , 1993, CONCUR.

[3]  Wojciech Penczek,et al.  A partial order approach to branching time logic model checking , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[4]  K. Varpaaniemi,et al.  On the Stubborn Set Method in Reduced State Space Generation , 1998 .

[5]  Kimmo Varpaaniemi,et al.  Efficient Detection of Deadlocks in Petri Nets Eecient Detection of Deadlocks in Petri Nets , 1993 .

[6]  Antti Valmari,et al.  A stubborn attack on state explosion , 1990, Formal Methods Syst. Des..

[7]  Pierre Wolper,et al.  A partial approach to model checking , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[8]  Bernd Grahlmann,et al.  The PEP Tool , 1997, CAV.

[9]  Pierre Wolper,et al.  Partial-Order Methods for Temporal Verification , 1993, CONCUR.

[10]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.