Lunar regolith thermal behavior revealed by Chang'E-1 microwave brightness temperature data

Abstract Microwave brightness temperature data obtained by the Chinese Chang'E-1 lunar orbiter are analyzed with the lunar diurnal variations filtered. Resulting maps from the high frequency microwave channel show lunar topographic signatures with close similarity to those seen in Clementine's lunar topography maps, while the low frequency channels reveal intriguing lunar surface properties not previously observed. Here we focus on two characteristics displayed by the filtered brightness temperature maps: in the high frequency maps the existence of an anti-correlation between daytime and nighttime brightness temperature deviations in certain regions (especially in the lunar maria), and in the low frequency maps the appearance of cold spots which correspond with the hot spots observed in the infrared during lunar eclipses.

[1]  David E. Smith,et al.  The Clementine Mission to the Moon: Scientific Overview , 1994, Science.

[2]  S. Keihm,et al.  Microwave Emission Spectrum of the Moon: Mean Global Heat Flow and Average Depth of the Regolith , 1975, Science.

[3]  Robert J. Coates,et al.  Lunar Brightness Variations with Phase at 4.3-MM Wave Length , 1961 .

[4]  R. C. Elphic,et al.  A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations , 2003 .

[5]  N. S. Soboleva,et al.  A Study of the Lunar Soil in Regions with Temperature Anomalies , 2001 .

[6]  R. Shorthill,et al.  Nonuniform Cooling of the Eclipsed Moon: A Listing of Thirty Prominent Anomalies , 1965, Science.

[7]  Alan B. Binder,et al.  Polar hydrogen deposits on the Moon , 2000 .

[8]  David H. Staelin,et al.  Possible effect of subsurface inhomogeneities on the lunar microwave spectrum , 1977 .

[9]  P. Lucey,et al.  Lunar Titanium Content from UV-VIS Measurements , 1996 .

[10]  Bruce A. Campbell,et al.  Focused 70-cm Wavelength Radar Mapping of the Moon , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[11]  D. F. Winter The Infrared Moon: Data, Interpretations, and Implications , 1970 .

[12]  B. Gary Results of a radiometric moon-mapping investigation at 3 millimeters wavelength. , 1967 .

[13]  Stephen J. Keihm,et al.  Lunar Microwave Brightness Temperature Observations Reevaluated in the Light of Apollo Program Findings , 1975 .

[14]  R. Shorthill Infrared atlas charts of the eclipsed moon , 1973 .

[15]  V. D. Krotikov,et al.  RADIO EMISSION AND NATURE OF THE MOON , 1964 .

[16]  E. Roelof Thermal behavior of rocks on the lunar surface , 1968 .

[17]  M. Mellon,et al.  Brightness temperatures of the lunar surface: Calibration and global analysis of the Clementine long‐wave infrared camera data , 2000 .

[18]  Martin A. Slade,et al.  Digital elevation models of the Moon from Earth-based radar interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  P. H. Moffat,et al.  Aperture Synthesis Polarimetry of the Moon at 21 cm , 1972 .

[20]  J. N. Goswami,et al.  Chandrayaan-1 mission to the Moon , 2008 .

[21]  W. W. Mendell,et al.  Thermogeologic mapping of the Moon from lunar orbit , 1993 .

[22]  S. Oshigami,et al.  Lunar Radar Sounder Observations of Subsurface Layers Under the Nearside Maria of the Moon , 2008, Science.

[23]  F. Peter Schloerb,et al.  Lunar heat flow and regolith structure inferred from interferometric observations at a wavelength of 49.3 cm , 1976 .

[24]  S. B. Nicholson,et al.  Lunar radiation and temperatures , 1930 .

[25]  Ya-Qiu Jin,et al.  Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer , 2007 .

[26]  G. Pettengill,et al.  High-resolution radar maps of the lunar surface at 3.8-cm wavelength , 1974 .

[27]  Ya-Qiu Jin,et al.  An inversion approach for lunar regolith layer thickness using optical albedo data and microwave emission simulation , 2009 .