Updated parameters for the transiting exoplanet WASP-3b using RISE, a new fast camera for the Liverpool Telescope

Some of the first results are reported from RISE – a new fast camera mounted on the Liverpool Telescope primarily designed to obtain high time-resolution light curves of transiting extrasolar planets for the purpose of transit timing. A full and partial transit of WASP-3 are presented, and a Markov-Chain Monte Carlo analysis is used to update the parameters from the discovery paper. This results in a planetary radius of $1.29^{\rm +0.05}_{-0.12}$ RJ and therefore a density of $0.82^{+0.14}_{-0.09}~{\rho}_J$, consistent with previous results. The inclination is $85.06^{\rm +0.16}_{-0.15}$ deg, in agreement (but with a significant improvement in the precision) with the previously determined value. Central transit times are found to be consistent with the ephemeris given in the discovery paper; however, a new ephemeris calculated using the longer baseline results in $T_{\rm c}$(0) = 2 454 605.55915 $\pm$ 0.00023 HJD and P = 1.846835 $\pm$ 0.000002 days.

[1]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[2]  C. Moutou,et al.  High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method , 2006 .

[3]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[4]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[5]  David Charbonneau,et al.  The transit light curve project. I. Four consecutive transits of the exoplanet XO-1b , 2006 .

[6]  Jason H. Steffen,et al.  An analysis of the transit times of tres-1b , 2005 .

[7]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[8]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[9]  E. Agol,et al.  On detecting terrestrial planets with timing of giant planet transits , 2004 .

[10]  J. Heyl,et al.  Using long-term transit timing to detect terrestrial planets , 2006, astro-ph/0610267.

[11]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[12]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[13]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[14]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[15]  R. G. West,et al.  WASP-3b: a strongly irradiated transiting gas-giant planet , 2007, 0711.0126.

[16]  Orbital Perturbations of Transiting Planets: A Possible Method to Measure Stellar Quadrupoles and to Detect Earth-Mass Planets , 2001, astro-ph/0104034.

[17]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[18]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .