Isogeometric Schwarz preconditioners for linear elasticity systems

Isogeometric Schwarz preconditioners are constructed and analyzed for both compressible elasticity in primal formulation and almost incompressible elasticity in mixed formulation. These preconditioners require the solution of local elasticity problems on overlapping subdomains forming a decomposition of the problem domain and the solution of a coarse elasticity problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner for the primal formulation of compressible elasticity yields an optimal convergence rate bound that is scalable in the number of subdomains and is linear in the ratio between subdomain and overlap sizes. Extensive numerical experiments in 2D and 3D confirm this theoretical bound and show that an analogous bound holds for the mixed formulation of almost incompressible elasticity. The numerical tests also show the good preconditioner performance with respect to the polynomial degree p and regularity k of the isogeometric basis functions, as well as with respect to the presence of discontinuous elastic coefficients in composite materials and to domain deformation.

[1]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[2]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[3]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[4]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[5]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[6]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[7]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[8]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[9]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[10]  Jesús Ildefonso Díaz Díaz,et al.  ON THE COMPLEX GINZBURG–LANDAU EQUATION WITH A DELAYED FEEDBACK , 2006 .

[11]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[12]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  Francesca Rapetti,et al.  Overlapping Schwarz Methods for Fekete and Gauss-Lobatto Spectral Elements , 2007, SIAM J. Sci. Comput..

[15]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[16]  Olof B. Widlund,et al.  An Overlapping Schwarz Algorithm for Almost Incompressible Elasticity , 2009, SIAM J. Numer. Anal..

[17]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[20]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[21]  G. Farin NURB curves and surfaces: from projective geometry to practical use , 1995 .

[22]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[23]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[24]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[25]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[26]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[27]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[28]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[29]  Giancarlo Sangalli,et al.  Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique , 2013 .

[30]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[31]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[32]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[33]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[34]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[35]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[36]  L. Pavarino Indefinite overlapping Schwarz methods for time-dependent Stokes problems☆ , 2000 .

[37]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[38]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[39]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[40]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[41]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[42]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[43]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[44]  Luca F. Pavarino,et al.  Overlapping Schwarz and Spectral Element Methods for Linear Elasticity and Elastic Waves , 2006, J. Sci. Comput..