Chiral Tertiary Amine/L‐Proline Cocatalyzed Enantioselective Morita–Baylis–Hillman (MBH) Reaction

Four types of chiral amines have been synthesized starting from readily available chiral sources. These chiral amines in combination with L-proline have been found to be efficient cocatalysts for the asymmetric Morita–Baylis–Hillman (MBH) reaction between methyl vinyl ketone (MVK) and aromatic aldehydes. The corresponding adducts were formed in reasonable chemical yields and with good enantioselectivities (up to 83 % ee). Moreover, parallel cocatalytic reactions with the two enantiomers of chiral amine 4 and L-proline revealed that it is the proline stereochemistry that determines the configuration of the newly formed chiral center. In addition, the existence of the free hydroxy group in amine 4a enhanced the enantioselectivity of the reaction. Based on these findings, a plausible mechanism for this cocatalytic MBH reaction has been proposed.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

[1]  Liang‐Nian He,et al.  (1R,2R)-(−)-2-Dimethylamino-1-(4-nitrophenyl)-1,3- propanediol/l-proline cocatalyzed enantioselective Morita–Baylis–Hillman reaction , 2007 .

[2]  Scott J. Miller,et al.  Amino acid-peptide-catalyzed enantioselective Morita-Baylis-Hillman reactions , 2006 .

[3]  S. Hatakeyama,et al.  β-Isocupreidine-Catalyzed Baylis−Hillman Reaction of Chiral N-Boc-α-Amino Aldehydes , 2006 .

[4]  Qi‐Lin Zhou,et al.  Synthesis of some new tertiary amines and their application as co-catalysts in combination with l-proline in enantioselective Baylis–Hillman reaction between o-nitrobenzaldehyde and methyl vinyl ketone , 2006 .

[5]  Y. Iwabuchi,et al.  β-Isocupreidine–hexafluoroisopropyl acrylate method for asymmetric Baylis–Hillman reactions , 2006 .

[6]  Scott J. Miller,et al.  Dual catalyst control in the enantioselective intramolecular Morita-Baylis-Hillman reaction. , 2005, Organic letters.

[7]  Chih-Wei Liu,et al.  1-Methylimidazole 3-N-oxide as a new promoter for the Morita–Baylis–Hillman reaction , 2005 .

[8]  A. Kamal,et al.  One pot conversion of azido arenes to N-arylacetamides and N-arylformamides: synthesis of 1,4-benzodiazepine-2,5-diones and fused [2,1-b]quinazolinones , 2004 .

[9]  N. Shankaraiah,et al.  Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines by employing polymer-supported reagents: Preparation of DC-81 , 2004 .

[10]  Jun‐An Ma,et al.  Towards perfect catalytic asymmetric synthesis: dual activation of the electrophile and the nucleophile. , 2004, Angewandte Chemie.

[11]  A. Kamal,et al.  Microwave enhanced reduction of nitro and azido arenes to N-arylformamides employing Zn–HCOONH4: synthesis of 4(3H)-quinazolinones and pyrrolo[2,1-c][1,4]benzodiazepines , 2004 .

[12]  Y. Hayashi,et al.  The Chiral Diamine Mediated Asymmetric Baylis-Hillman Reaction , 2004 .

[13]  P. Krishna,et al.  N‐Methylprolinol Catalysed Asymmetric Baylis−Hillman Reaction , 2004 .

[14]  Scott J. Miller,et al.  Dual catalyst control in the amino acid-peptide-catalyzed enantioselective Baylis-Hillman reaction. , 2003, Organic letters.

[15]  M. Shi,et al.  Polymer-supported lewis bases for the Baylis-Hillman reaction , 2003 .

[16]  K. Nicholas,et al.  Synthesis of 3-substituted quinolines via transition-metal-catalyzed reductive cyclization of o-nitro Baylis-Hillman acetates. , 2003, The Journal of organic chemistry.

[17]  D. Basavaiah,et al.  Recent advances in the Baylis-Hillman reaction and applications. , 2003, Chemical reviews.

[18]  K N Houk,et al.  Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions. , 2003, Journal of the American Chemical Society.

[19]  Kwunmin Chen,et al.  Chiral Lewis acid-catalyzed asymmetric Baylis-Hillman reactions. , 2003, The Journal of organic chemistry.

[20]  Jae Nyoung Kim,et al.  Synthesis of 3-substituted-4-hydroxyquinoline N-oxides from the Baylis–Hillman adducts of o-nitrobenzaldehydes , 2003 .

[21]  K N Houk,et al.  Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra- and intermolecular aldol reactions. , 2003, Journal of the American Chemical Society.

[22]  Zhenghong Zhou,et al.  Dramatic rate acceleration of the Baylis-Hillman reaction in homogeneous medium in the presence of water. , 2002, Organic letters.

[23]  Yong Xu,et al.  Lewis Base Effects in the Baylis−Hillman Reaction of Arenecarbaldehydes and N-Arylidene-4-methylbenzenesulfonamides with α,β-Unsaturated Cyclic Ketones , 2002 .

[24]  M. Shi,et al.  An exploration of asymmetric Baylis–Hillman reactions catalyzed by quinidine-derived chiral amines , 2002 .

[25]  David J. Williams,et al.  Synthesis of chiral bicyclic azetidine derivatives , 2002 .

[26]  B. Jiang,et al.  Highly enantioselective alkynylation of aldehydes catalyzed by a readily available chiral amino alcohol-based ligand. , 2002, Chemical communications.

[27]  M. Shi,et al.  Lewis base and L-proline co-catalyzed Baylis-Hillman reaction of arylaldehydes with methyl vinyl ketone , 2002 .

[28]  Y. Iwabuchi,et al.  Recent Progress in the Morita-Baylis-Hillman Reactions , 2002 .

[29]  T. Esumi,et al.  An enantio- and stereocontrolled route to epopromycin B via cinchona alkaloid-catalyzed Baylis-Hillman reaction , 2001 .

[30]  T. Esumi,et al.  An enantio- and stereocontrolled synthesis of (-)-mycestericin E via cinchona alkaloid-catalyzed asymmetric Baylis-Hillman reaction. , 2001, Chemical communications.

[31]  A. Kamal,et al.  Synthesis of pyrrolo[2,1-c[1,4]benzodiazepines via reductive cyclization of omega-azido carbonyl compounds by TMSI: an efficient preparation of antibiotic DC-81 and its dimers. , 2000, Bioorganic & medicinal chemistry letters.

[32]  A. Kamal,et al.  An efficient reduction of azides to amines: synthesis of DNA interactive pyrrolo[2,1-c][1,4]benzodiazepines , 2000 .

[33]  P. Langer,et al.  New Strategies for the Development of an Asymmetric Version of the Baylis-Hillman Reaction This work was supported by the Fonds der Chemischen Industrie (Liebig-scholarship and funds for P. L.). P. L. thanks Prof. Dr. A. de Meijere for his support. , 2000, Angewandte Chemie.

[34]  Richard A. Lerner,et al.  Proline-Catalyzed Direct Asymmetric Aldol Reactions , 2000 .

[35]  Y. Iwabuchi,et al.  Chiral Amine-Catalyzed Asymmetric Baylis−Hillman Reaction: A Reliable Route to Highly Enantiomerically Enriched (α-Methylene-β-hydroxy)esters , 1999 .

[36]  E. Juaristi,et al.  Application of phosphorylated reagents derived from N,N′-di-[(S)-α-phenylethyl]-cyclohexane-1,2-diamines in the determination of the enantiomeric purity of chiral alcohols , 1998 .

[37]  J. W. Leahy,et al.  The asymmetric Baylis-Hillman reaction as a template in organic synthesis , 1997 .

[38]  I. Markó,et al.  Catalytic enantioselective Baylis-Hillman reactions. Correlation between pressure and enantiomeric excess , 1997 .

[39]  A. Kamal,et al.  Novel biocatalytic reduction of aryl azides: chemoenzymaticsynthesis of pyrrolo[2,1-c][1,4]benzodiazepineantibiotics1 , 1997 .

[40]  A. Kamal,et al.  Synthesis of pyrrolo[2,1-c][1,4]benzodiazepine antibiotics via azido reductive cyclization with HMDST , 1996 .

[41]  H. Oguri,et al.  Asymmetric Baylis-Hillman reactions using chiral 2,3-disubstituted 1,4-diazabicyclo[2.2.2]octanes catalysts under high pressure conditions , 1995 .

[42]  P. Molina,et al.  Synthesis of pyrrolo[2,1-c][1,4]benzodiazepines via an Intramolecular Aza-Wittig reaction. Synthesis of the antibiotic DC-81 , 1995 .

[43]  D. Pini,et al.  New chiral ligand for optically active β-hydroxy esters synthesis by enantioselective reformatsky reactions , 1994 .

[44]  E. Breitmaier,et al.  (5aS,10aS)‐Octahydro‐1H,5H‐dipyrrolo[1,2‐a:1′,2Prime;‐d]pyrazin «DPP» als Hilfsreagenz bei der enantioselektiven 1,2‐Addition von Grignard‐Reagenzien an prochirale Carbonylverbindungen , 1994 .

[45]  M. Akssira,et al.  New Synthesis of 1,4 Benzodiazepine-2,5-diones by Means of HCL Gas Catalyst , 1993 .

[46]  M. Hirama,et al.  Synthesis of chiral 2,3-disubstituted 1,4-diazabicyclo [2.2.2] octane. New ligand for the osmium-catalyzed asymmetric dihydroxylation of olefins , 1992 .

[47]  A. Kamal Enzymic approach to the synthesis of the pyrrolo[1,4]benzodiazepine antibiotics , 1991 .

[48]  N. Isaacs,et al.  Asymmetric induction in the Baylis-Hillman reaction , 1991 .

[49]  Matthias Bremer,et al.  Konformation von Anthranilsäurepeptiden, 3 [1]: Konformationen kleiner Anthranilsäure-Prolinpeptide im Kristall, in Lösung und eine semiempirische (AM 1) Beschreibung der Prolin-Ramachandran-Hyperflächen / Conformation of Anthranilic Acid Peptides, 3 [1]: Conformation of Small Anthranilic-Acid-Proli , 1990 .

[50]  W. Ollis,et al.  Stereoselective epoxidation of hydroxyenones. The synthesis of the sidechain of clerocidin , 1990 .

[51]  Yuji Koseki,et al.  Stereoselective synthesis of tilivalline , 1989 .

[52]  G. Roos,et al.  Synthetic potential of the tertiary-amine-catalysed reaction of activated vinyl carbanions with aldehydes , 1988 .

[53]  P. Sundararaman,et al.  Enantioselection via Birch reduction-alkylation of a chiral anthranilic acid derivative: synthesis of enantiomerically pure aminocyclohexanes , 1985 .