Standard Definitions of Persistence Length Do Not Describe the Local Intrinsic Stiffness of Real Polymer Chains

On the basis of extensive Monte Carlo simulations of lattice models for linear chains under good and Θ solvents conditions, and for bottle-brush polymers under good solvent conditions, different me...

[1]  J. Wittmer,et al.  Intramolecular long-range correlations in polymer melts: the segmental size distribution and its moments. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Peter Schurtenberger,et al.  Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects , 1996 .

[3]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[4]  Olli Ikkala,et al.  Elasticity of Comb Copolymer Cylindrical Brushes , 2000 .

[5]  Axel H. E. Müller,et al.  Cylindrical polymer brushes , 2005 .

[6]  Katsunori Itoh,et al.  Simulations of the shape of a regularly branched polymer as a model of a polymacromonomer , 1999 .

[7]  Stefano Elli,et al.  Size and persistence length of molecular bottle-brushes by Monte Carlo simulations. , 2004, The Journal of chemical physics.

[8]  Karl Fischer,et al.  Conformation of Cylindrical Brushes in Solution: Effect of Side Chain Length , 2006 .

[9]  J. D. Cloizeaux Form Factor of an Infinite Kratky-Porod Chain , 1973 .

[10]  R. Pecora,et al.  Brownian dynamics simulations of wormlike chains: dynamic light scattering from a 2311 base pair DNA fragment , 1990 .

[11]  J. D. Cloizeaux,et al.  Polymers in Solution: Their Modelling and Structure , 2010 .

[12]  K. Binder,et al.  Structure of bottle-brush polymers in solution: a Monte Carlo test of models for the scattering function. , 2008, The Journal of chemical physics.

[13]  P. Grassberger Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .

[14]  Glenn H. Fredrickson,et al.  Surfactant-induced lyotropic behavior of flexible polymer solutions , 1993 .

[15]  O. Borisov,et al.  Conformations of comb-like macromolecules☆ , 1987 .

[16]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[17]  Arun Yethiraj,et al.  A Monte Carlo simulation study of branched polymers. , 2006, The Journal of chemical physics.

[18]  A. Holtzer Interpretation of the angular distribution of the light scattered by a polydisperse system of rods , 1955 .

[19]  C. Elvingson,et al.  Semiflexible Chain Molecules with Nonuniform Curvature. 1. Structural Properties , 1994 .

[20]  Hsiao-Ping Hsu,et al.  Characteristic Length Scales and Radial Monomer Density Profiles of Molecular Bottle-Brushes: Simulation and Experiment , 2010 .

[21]  P. Flory Principles of polymer chemistry , 1953 .

[22]  Kurt Binder,et al.  Interdiffusion and self‐diffusion in polymer mixtures: A Monte Carlo study , 1991 .

[23]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[24]  Long range bond-bond correlations in dense polymer solutions. , 2004, Physical review letters.

[25]  O. Borisov,et al.  Comb-Branched Polymers: Monte Carlo Simulation and Scaling , 1996 .

[26]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[27]  Yuri A. Kuznetsov,et al.  Intrinsic and +topological stiffness in branched polymers , 2005 .

[28]  S. Lecommandoux,et al.  Effect of Dense Grafting on the Backbone Conformation of Bottlebrush Polymers: Determination of the Persistence Length in Solution , 2002 .

[29]  L. Schäfer Excluded Volume Effects in Polymer Solutions , 1999 .

[30]  Manfred Schmidt,et al.  Persistence Length of Cylindrical Brush Molecules Measured by Atomic Force Microscopy , 2006 .

[31]  Lothar Schäfer,et al.  Excluded Volume Effects in Polymer Solutions: As Explained by the Renormalization Group , 2011 .

[32]  A. Ostendorf,et al.  Scaling of the correlations among segment directions of a self-repelling polymer chain , 1999 .

[33]  D. Shirvanyants,et al.  Long-Range Correlations in a Polymer Chain Due to Its Connectivity , 2008 .

[34]  Olli Ikkala,et al.  On lyotropic behavior of molecular bottle-brushes: A Monte Carlo computer simulation study , 1997 .

[35]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[36]  B. Duplantier,et al.  Geometry of polymer chains near the theta‐point and dimensional regularization , 1987 .

[37]  T. Norisuye,et al.  Backbone Stiffness of Comb-Branched Polymers , 2001 .

[38]  Thomas A. Vilgis,et al.  Scaling theory of planar brushes formed by branched polymers , 1995 .

[39]  Frey,et al.  Force-Extension Relation and Plateau Modulus for Wormlike Chains. , 1996, Physical review letters.

[40]  L Schäfer,et al.  Calculation of the persistence length of a flexible polymer chain with short-range self-repulsion , 2004, The European physical journal. E, Soft matter.

[41]  Hsiao-Ping Hsu,et al.  How to define variation of physical properties normal to an undulating one-dimensional object. , 2009, Physical review letters.

[42]  A. Müller,et al.  Softening of the stiffness of bottle-brush polymers by mutual interaction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[44]  M. Textor,et al.  Conformation of poly(L-lysine)-graft-poly(ethylene glycol) molecular brushes in aqueous solution studied by small-angle neutron scattering , 2007, The European physical journal. E, Soft matter.

[45]  T. Neugebauer Berechnung der Lichtzerstreuung von Fadenkettenlösungen , 1943 .

[46]  Krzysztof Matyjaszewski,et al.  On the shape of bottle-brush macromolecules: systematic variation of architectural parameters. , 2005, The Journal of chemical physics.

[47]  Hiromi Yamakawa,et al.  Modern Theory of Polymer Solutions , 1971 .

[48]  Krzysztof Matyjaszewski,et al.  Cylindrical molecular brushes: Synthesis, characterization, and properties , 2008 .