Up-to-date development of lithium-ion batteries in Japan

In this paper, the authors review the up-to-date development of lithium-ion batteries (LIBs), focusing mainly on the situation in Japan. The materials, constructions, and electrochemical performance of the latest commercially available LIBs, including lithium polymer batteries, which have come onto the market only fairly recently, are described in the first half of this article. The authors then discuss the recent trends in the development of battery materials for LIBs as well as those of large-scale LIBs.

[1]  Alexander Volta F.R.S. On the Electricity excited by the mere Contact of conducting Substances of différent Kinds. , 1800 .

[2]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[3]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[4]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[5]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[6]  Dahn,et al.  Phase diagram of LixC6. , 1991, Physical review. B, Condensed matter.

[7]  C. Delmas,et al.  Electrochemical and physical properties of the LixNi1$minus;yCoyO2 phases , 1992 .

[8]  H. Zabel,et al.  Graphite Intercalation Compounds II , 1992 .

[9]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[10]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[11]  A. D. Kock,et al.  The versatility of MnO2 for lithium battery applications , 1993 .

[12]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[13]  Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4. , 1994 .

[14]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[15]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiNi1 / 2Co1 / 2 O 2 ( R 3̄m ) for 4 Volt Secondary Lithium Cells , 1994 .

[16]  J. Dahn,et al.  LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells , 1994 .

[17]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[18]  M. Endo,et al.  A Mechanism of Lithium Storage in Disordered Carbons , 1994, Science.

[19]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[20]  T. Hazama,et al.  Lithium secondary batteries in Japan , 1995 .

[21]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[22]  H. Tamura,et al.  Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes , 1995 .

[23]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[24]  A. Hirano,et al.  Relationship between non-stoichiometry and physical properties in LiNiO2 , 1995 .

[25]  C. Sigala,et al.  Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 − yO4 (0 ≤ y ≤ 1) , 1995 .

[26]  Minoru Inaba,et al.  In situ Raman study on electrochemical Li intercalation into graphite , 1995 .

[27]  In situ Raman Study on Electrochemical Li Intercalation into Graphite. , 1995 .

[28]  Doron Aurbach,et al.  Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems , 1995 .

[29]  Kazuo Murata,et al.  An overview of the research and development of solid polymer electrolyte batteries , 1995 .

[30]  H. Fujimoto,et al.  Charge‐Discharge Characteristics of the Mesocarbon Miocrobeads Heat‐Treated at Different Temperatures , 1995 .

[31]  J. Dahn,et al.  Lithium Insertion in High Capacity Carbonaceous Materials , 1995 .

[32]  M. Inaba,et al.  In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures , 1996 .

[33]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[34]  Masaki Yoshio,et al.  An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds , 1996 .

[35]  Takashi Uchida,et al.  The Spinel Phases LiMyMn2‐yO4 (M: Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries. , 1996 .

[36]  J. Dahn,et al.  Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins , 1996 .

[37]  T. Abe,et al.  Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution , 1996 .

[38]  Takashi Uchida,et al.  The Spinel Phases LiM y Mn2 − y O 4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries , 1996 .

[39]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[40]  M. Inaba,et al.  Raman study of layered rock‐salt LiCoO2 and its electrochemical lithium deintercalation , 1997 .

[41]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[42]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[43]  Hajime Arai,et al.  Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) , 1997 .

[44]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[45]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[46]  Y. Takeda,et al.  Electrochemical studies of a new anode material, Li3 − xMxN (M = Co, Ni, Cu) , 1997 .

[47]  R. Ishikawa,et al.  Development of 10 Wh class lithium secondary cells in the 'New Sunshine Program' , 1997 .

[48]  M. Inaba,et al.  Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate , 1997 .

[49]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[50]  M. Inaba,et al.  Electrochemical Lithium Intercalation within Carbonaceous Materials: Intercalation Processes, Surface Film Formation, and Lithium Diffusion , 1998 .

[51]  Large Hysteresis during Lithium Insertion into and Extraction from High‐Capacity Disordered Carbons , 1998 .

[52]  T. Abe,et al.  STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution , 1999 .

[53]  G. G Harding Electric vehicles in the next millennium , 1999 .

[54]  Susumu Yoda,et al.  The advent of battery-based societies and the global environment in the 21st century , 1999 .

[55]  A Funahashi,et al.  Development of lithium secondary batteries for electric vehicles and home-use load leveling systems , 1999 .

[56]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[57]  J. Arai,et al.  Solvation states and properties of binary mixtures of halogenated cyclic carbonates and a linear carbonate , 1999 .

[58]  Mikito Nagata,et al.  A New Lithium Cathode LiCoMnO4: Toward Practical 5 V Lithium Batteries , 1999 .

[59]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[60]  H. Fujimoto,et al.  High capacity carbon anode for Li-ion battery: A theoretical explanation , 1999 .

[61]  A. Volta On the electricity excited by the mere contact of conducting substances of different kinds , 1999 .

[62]  M. Watanabe,et al.  High ionic conductivity and electrode interface properties of polymer electrolytes based on high molecular weight branched polyether , 1999 .

[63]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[64]  H. Sakaguchi,et al.  Synthesis and anode behavior of lithium storage intermetallic compounds with various crystallinities , 1999 .

[65]  R. Mcmillan,et al.  Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes , 1999 .

[66]  D. Aurbach,et al.  The Study of Surface Film Formation on Noble-Metal Electrodes in Alkyl Carbonates/Li Salt Solutions, Using Simultaneous in Situ AFM, EQCM, FTIR, and EIS , 1999 .

[67]  Tatsuo Horiba,et al.  Large-scale development of lithium batteries for electric vehicles and electric power storage applications , 1999 .

[68]  Felix B. Dias,et al.  Trends in polymer electrolytes for secondary lithium batteries , 2000 .

[69]  A. Kawakami,et al.  Characteristics of the electrolyte with fluoro organic lithium salts , 2000 .

[70]  T. Nakajima Fluorine-containing energy conversion materials , 2000 .

[71]  T. Fujinami,et al.  Molecular design of inorganic-organic hybrid polyelectrolytes to enhance lithium ion conductivity , 2000 .

[72]  N. Imanishi,et al.  Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode , 2000 .

[73]  E. Yasukawa,et al.  Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes , 2000 .

[74]  Minoru Inaba,et al.  Calorimetric Study on the Hysteresis in the Charge‐Discharge Profiles of Mesocarbon Microbeads Heat‐Treated at Low Temperatures , 2000 .

[75]  Willett Kempton,et al.  Electric-drive vehicles for peak power in Japan , 2000 .

[76]  Christopher S. Johnson,et al.  Electrochemistry and in-situ x-ray diffraction of InSb in lithium batteries. , 2000 .

[77]  M. Ue,et al.  Direct fluorination of γ-butyrolactone , 2001 .

[78]  A. Kawakami,et al.  Electronic structures and electrochemical properties of LiPF6−n(CF3)n , 2001 .

[79]  Michael Schmidt,et al.  Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries , 2001 .

[80]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .