An allosterically regulated molecular shuttle.

[1]  J. Changeux,et al.  Allosteric Mechanisms of Signal Transduction , 2005, Science.

[2]  Francesco Zerbetto,et al.  A generic basis for some simple light-operated mechanical molecular machines. , 2004, Journal of the American Chemical Society.

[3]  R. Nolte,et al.  Highly negative homotropic allosteric binding of viologens in a double-cavity porphyrin. , 2003, Journal of the American Chemical Society.

[4]  William A. Goddard,et al.  Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .

[5]  Al-Sayah,et al.  Metal Ions as Allosteric Inhibitors in Hydrogen-Bonding Receptors This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada and by Research Corporation (Research Innovation Award). , 2000, Angewandte Chemie.

[6]  J. Wells,et al.  Searching for new allosteric sites in enzymes. , 2004, Current opinion in structural biology.

[7]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[8]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[9]  R. McDonald,et al.  Structural Studies on Hydrogen‐Bonding Receptors for Barbiturate Guests That Use Metal Ions as Allosteric Inhibitors , 2004 .

[10]  F. Hampel,et al.  The activation of tertiary carboxamides in metal complexes: an experimental and theoretical study on the methanolysis of acylated bispicolylamine copper(II) complexes. , 2004, Inorganic chemistry.

[11]  A. Nairn,et al.  Structural Basis for the Autoinhibition of Calcium/Calmodulin-Dependent Protein Kinase I , 1996, Cell.

[12]  Metal-ion-binding peptides: from catalysis to protein tagging. , 2003, Angewandte Chemie.

[13]  F. Hampel,et al.  Die Aktivierung der C‐N‐Bindung von tertiären Carboxamiden in Werner‐Komplexen: Eine klassische Struktur‐Funktions‐Beziehung , 2002 .

[14]  David A Leigh,et al.  Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.

[15]  T. Nabeshima Regulation of ion recognition by utilizing information at the molecular level , 1996 .

[16]  J. Changeux,et al.  Allosteric receptors after 30 years , 1998, Neuron.

[17]  David A Leigh,et al.  Complexation-induced translational isomerism: shuttling through stepwise competitive binding. , 2005, Angewandte Chemie.

[18]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[19]  M Bolognesi,et al.  New structures of allosteric proteins revealing remarkable conformational changes. , 1996, Current opinion in structural biology.

[20]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[21]  M. Ikeda,et al.  Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. , 2001, Accounts of chemical research.

[22]  M. Al-Sayah,et al.  Controlling allostery using redox chemistry. , 2002, Chemical communications.

[23]  Ronald R. Breaker,et al.  Natural and engineered nucleic acids as tools to explore biology , 2004, Nature.

[24]  He Tian,et al.  A Lockable Light‐Driven Molecular Shuttle with a Fluorescent Signal , 2004 .

[25]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[26]  Masayuki Takeuchi,et al.  Molecular Design of Synthetic Receptors with Dynamic, Imprinting, and Allosteric Functions , 2005 .

[27]  F. Hampel,et al.  The reactivity of N-coordinated amides in metallopeptide frameworks: molecular events in metal-induced pathogenic pathways? , 2001, Chemistry.

[28]  B. Kemp,et al.  Active site-directed protein regulation , 1999, Nature.

[29]  Roland Krämer,et al.  Allosteric supramolecular receptors and catalysts. , 2004, Chemical reviews.

[30]  Wendell A Lim,et al.  The modular logic of signaling proteins: building allosteric switches from simple binding domains. , 2002, Current opinion in structural biology.

[31]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Nepogodiev,et al.  Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. , 2001, Journal of the American Chemical Society.

[33]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[34]  He Tian,et al.  A light-driven rotaxane molecular shuttle with dual fluorescence addresses. , 2004, Organic letters.

[35]  David A. Leigh,et al.  Synthetic Molecular Machines , 2005 .

[36]  F. Hampel,et al.  Activation of the tertiary carboxamide C-N bond in Werner complexes: a classical structure-function relationship. , 2002, Angewandte Chemie.

[37]  M. Ikeda,et al.  Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. , 2001, Accounts of chemical research.

[38]  T. Lectka,et al.  COPPER(II)-CATALYZED AMIDE ISOMERIZATION : EVIDENCE FOR N-COORDINATION , 1996 .

[39]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[40]  L. Johnson,et al.  Control by phosphorylation. , 1996, Current opinion in structural biology.

[41]  Francesco Zerbetto,et al.  Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. , 2005, Angewandte Chemie.

[42]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.