Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model

[1]  Qing Huo Liu,et al.  EB Scheme-Based Hybrid SE-FE DGTD Method for Multiscale EM Simulations , 2016, IEEE Transactions on Antennas and Propagation.

[2]  Lei Zhou,et al.  Dynamical control on helicity of electromagnetic waves by tunable metasurfaces , 2016, Scientific Reports.

[3]  J. Korterik,et al.  A phased antenna array for surface plasmons , 2016, Scientific Reports.

[4]  Yuebing Zheng,et al.  Optimizing plasmonic nanoantennas via coordinated multiple coupling , 2015, Scientific Reports.

[5]  D. Werner,et al.  Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials , 2015, Scientific Reports.

[6]  Pierre Berini,et al.  On the convergence and accuracy of the FDTD method for nanoplasmonics. , 2015, Optics express.

[7]  Qing Huo Liu,et al.  A New 3-D Nonspurious Discontinuous Galerkin Spectral Element Time-Domain (DG-SETD) Method for Maxwell’s Equations , 2015, IEEE Transactions on Antennas and Propagation.

[8]  Nikolay I. Zheludev,et al.  Coherent control of optical polarization effects in metamaterials , 2015, Scientific Reports.

[9]  Feng Liu,et al.  An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape , 2015, Scientific Reports.

[10]  Qing Huo Liu,et al.  A new efficient 3D Discontinuous Galerkin Time Domain (DGTD) method for large and multiscale electromagnetic simulations , 2015, J. Comput. Phys..

[11]  Haitao Liu,et al.  Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas , 2015, Scientific Reports.

[12]  Q. Gong,et al.  Tuning the hybridization of plasmonic and coupled dielectric nanowire modes for high-performance optical waveguiding at sub-diffraction-limited scale , 2014, Scientific Reports.

[13]  S. Burger,et al.  The spectral shift between near- and far-field resonances of optical nano-antennas. , 2014, Optics express.

[14]  N. Zheludev,et al.  Coherent control of optical activity and optical anisotropy of thin metamaterials , 2013, 1312.0414.

[15]  Arnold F. McKinley,et al.  Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions , 2013 .

[16]  D. C. Zografopoulos,et al.  A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures , 2013, Journal of Lightwave Technology.

[17]  Jun Shibayama,et al.  Frequency-Dependent Formulations of a Drude-Critical Points Model for Explicit and Implicit FDTD Methods Using the Trapezoidal RC Technique , 2012, IEICE Trans. Electron..

[18]  S. D. Gedney,et al.  A Discontinuous Galerkin Finite Element Time-Domain Method Modeling of Dispersive Media , 2012, IEEE Transactions on Antennas and Propagation.

[19]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[20]  A. Kildishev,et al.  Optical Dispersion Models for Time-Domain Modeling of Metal-Dielectric Nanostructures , 2011, IEEE Transactions on Magnetics.

[21]  A. Vial,et al.  A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method , 2011 .

[22]  S. Chen,et al.  Retardation-effect-induced plasmon modes in a silica-core gold-shell nanocylinder pair , 2010 .

[23]  Yaxin Yu,et al.  An E-J Collocated 3-D FDTD Model of Electromagnetic Wave Propagation in Magnetized Cold Plasma , 2010, IEEE Transactions on Antennas and Propagation.

[24]  Qing Huo Liu,et al.  Microwave Imaging in Layered Media: 3-D Image Reconstruction From Experimental Data , 2010, IEEE Transactions on Antennas and Propagation.

[25]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[26]  Y. H. Chang,et al.  Optical singularities associated with the energy flow of two closely spaced core-shell nanocylinders. , 2009, Optics express.

[27]  F. Capasso,et al.  The forces from coupled surface plasmon polaritons in planar waveguides. , 2009, Optics express.

[28]  Harald Giessen,et al.  Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling. , 2008, Optics express.

[29]  D. Davidson,et al.  Numerical Evaluation of High-Order Finite Element Time Domain Formulations in Electromagnetics , 2008, IEEE Transactions on Antennas and Propagation.

[30]  Thierry Laroche,et al.  Comparison of gold and silver dispersion laws suitable for FDTD simulations , 2008 .

[31]  F. Rachidi,et al.  On the Choice Between Transmission Line Equations and Full-Wave Maxwell's Equations for Transient Analysis of Buried Wires , 2008, IEEE Transactions on Electromagnetic Compatibility.

[32]  M. J. Lockyear,et al.  Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture. , 2008, Physical review letters.

[33]  F. Teixeira,et al.  Mixed Finite-Element Time-Domain Method for Transient Maxwell Equations in Doubly Dispersive Media , 2008, IEEE Transactions on Microwave Theory and Techniques.

[34]  A. Vial,et al.  Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method , 2007 .

[35]  Peter Nordlander,et al.  Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles , 2007 .

[36]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[37]  A. Vial Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method , 2007 .

[38]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[39]  F. Teixeira,et al.  Mixed $E$–$B$ Finite Elements for Solving 1-D, 2-D, and 3-D Time-Harmonic Maxwell Curl Equations , 2007, IEEE Microwave and Wireless Components Letters.

[40]  V. Podolskiy,et al.  Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. , 2007, Optics express.

[41]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[42]  G. Rodrigue,et al.  Vector finite-element modeling of the full-wave Maxwell equations to evaluate power loss in bent optical fibers , 2005, Journal of Lightwave Technology.

[43]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[44]  Qing Huo Liu,et al.  The PSTD algorithm: A time-domain method requiring only two cells per wavelength , 1997 .

[45]  O. Picon,et al.  A finite element method based on Whitney forms to solve Maxwell equations in the time domain , 1995 .

[46]  Youngjoo Chung,et al.  PLRC AND ADE IMPLEMENTATIONS OF DRUDE- CRITICAL POINT DISPERSIVE MODEL FOR THE FDTD METHOD , 2013 .

[47]  Qing Huo Liu,et al.  A NEW 2D NON-SPURIOUS DISCONTINUOUS GALERKIN FINITE ELEMENT TIME DOMAIN (DG-FETD) METHOD FOR MAXWELL'S EQUATIONS , 2013 .

[48]  V. Shalaev Optical negative-index metamaterials , 2007 .

[49]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .