Water desalination with a single-layer MoS2 nanopore

Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.

[1]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[2]  E. Tajkhorshid,et al.  Thermodynamic insight into spontaneous hydration and rapid water permeation in aquaporins. , 2014, Applied physics letters.

[3]  R. Ziff,et al.  Molecular Dynamics of Supercritical Water Using a Flexible SPC Model , 1994 .

[4]  Narayana R Aluru,et al.  Water Transport through Ultrathin Graphene , 2010 .

[5]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[6]  P. Agre,et al.  Molecular structure of the water channel through aquaporin CHIP. The hourglass model. , 1994, The Journal of biological chemistry.

[7]  Akili D. Khawaji,et al.  Advances in seawater desalination technologies , 2008 .

[8]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[9]  N. Aluru,et al.  Fast reverse osmosis using boron nitride and carbon nanotubes , 2008 .

[10]  Paul Ih-Fei Liu,et al.  Energy, Technology, And The Environment , 2004 .

[11]  Li-Yu Daisy Liu,et al.  Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. , 2015, Nano letters.

[12]  C. Ybert,et al.  Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport. , 2014, The Journal of chemical physics.

[13]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[14]  Hui Yan,et al.  The preparation of a strawberry-like super-hydrophilic surface on the molybdenum substrate , 2012 .

[15]  T. Heinz,et al.  2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers , 2014, Advanced materials.

[16]  S. Ramaprabhu,et al.  Functionalized graphene sheets for arsenic removal and desalination of sea water , 2011 .

[17]  N. Aluru,et al.  Effect of induced electric field on single-file reverse osmosis. , 2009, Physical chemistry chemical physics : PCCP.

[18]  Junhang Dong,et al.  Desalination by reverse osmosis using MFI zeolite membranes , 2004 .

[19]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[20]  N. Aluru,et al.  DNA base detection using a single-layer MoS2. , 2014, ACS nano.

[21]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[22]  Sony Joseph,et al.  Why are carbon nanotubes fast transporters of water? , 2008, Nano letters.

[23]  Hyung Gyu Park,et al.  Ion exclusion by sub-2-nm carbon nanotube pores , 2008, Proceedings of the National Academy of Sciences.

[24]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[25]  Benny D. Freeman,et al.  Water Purification by Membranes: The Role of Polymer Science , 2010 .

[26]  Feng Yan,et al.  Two-dimensional material membranes: an emerging platform for controllable mass transport applications. , 2014, Small.

[27]  Eric M.V. Hoek,et al.  Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes , 2009 .

[28]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[29]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[30]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[31]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[32]  Liyi Shi,et al.  Enhanced capacitive deionization performance of graphene/carbon nanotube composites , 2012 .

[33]  Thomas Melin,et al.  State-of-the-art of reverse osmosis desalination , 2007 .

[34]  Jakob Buchheim,et al.  Ultimate Permeation Across Atomically Thin Porous Graphene , 2014, Science.

[35]  Boyang Wang,et al.  Selective ion passage through functionalized graphene nanopores. , 2008, Journal of the American Chemical Society.

[36]  Patrick Tabeling,et al.  Physics and technological aspects of nanofluidics. , 2014, Lab on a chip.

[37]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[38]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[39]  N. Aluru,et al.  Graphitic carbon-water nonbonded interaction parameters. , 2013, The journal of physical chemistry. B.

[40]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[41]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[42]  K. Schulten,et al.  Pressure-induced water transport in membrane channels studied by molecular dynamics. , 2002, Biophysical journal.

[43]  E. Wang,et al.  Nanostructured materials for water desalination , 2011, Nanotechnology.

[44]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[45]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[46]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[47]  Eric M.V. Hoek,et al.  A review of water treatment membrane nanotechnologies , 2011 .

[48]  Yun Hee Jang,et al.  Layer-controlled CVD growth of large-area two-dimensional MoS2 films. , 2015, Nanoscale.

[49]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[50]  J. Kong,et al.  Selective molecular transport through intrinsic defects in a single layer of CVD graphene. , 2012, ACS nano.

[51]  A. Finkelstein,et al.  Water permeability of gramicidin A-treated lipid bilayer membranes , 1978, The Journal of general physiology.

[52]  F. Detcheverry,et al.  Optimizing water permeability through the hourglass shape of aquaporins , 2013, Proceedings of the National Academy of Sciences.

[53]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[54]  Zuzanna S Siwy,et al.  Detecting single porphyrin molecules in a conically shaped synthetic nanopore. , 2005, Nano letters.

[55]  Qing Tang,et al.  Graphene-related nanomaterials: tuning properties by functionalization. , 2013, Nanoscale.

[56]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[57]  L. Bartels 2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1‐x)Se2xMonolayers. , 2014 .

[58]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[59]  Linda Zou,et al.  Recent developments in forward osmosis : opportunities and challenges. , 2012 .

[60]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[61]  M. Wanunu,et al.  Direct and Scalable Deposition of Atomically Thin Low-Noise MoS2 Membranes on Apertures. , 2015, ACS nano.