Mechanoresponsive Healable Metallosupramolecular Polymers

The development of polymers that possess superb mechanical properties and at the same time are capable of sensing damage and self-healing is presented. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) based tridentate ligand 2,6-bis(1,2,3-triazol-4-yl)pyridine (BTP) and covalent mechanophore spiropyran (SP) units are incorporated into the polymer backbone to prepare ligand macromolecule. Upon coordinating with transition or lanthanide metal salts, metallosupramolecular films with phased-separated soft/hard morphology are spontaneously formed. The resulting materials show a rare combination of strong, tough, and elastic mechanical properties and are able to sense damage by changing optical properties. The Zn2+-containing material can self-heal in the presence of solvent and fully restore its mechanical properties. The underlying structure–property relationship is unveiled. In particular, the interplay between the covalent SP mechanophore and the noncovalent metal–ligand interactions and their hard phase...

[1]  H. Kondo,et al.  Rate control by restricting mobility of substrate in specific reaction field. Negative photochromism of water-soluble spiropyran in AOT reversed micelles , 1982 .

[2]  R. Sijbesma,et al.  Activating catalysts with mechanical force. , 2009, Nature chemistry.

[3]  James R. McElhanon,et al.  Stress Sensing in Polycaprolactone Films via an Embedded Photochromic Compound , 2010, ACS applied materials & interfaces.

[4]  T. Shiga,et al.  Fluorescence from poly(N-vinylcarbazole) in uniaxially stretched polymer films , 1997 .

[5]  Xia Ding,et al.  A Multiresponsive, Shape‐Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by Orthogonal Self‐Assembly , 2012, Advanced materials.

[6]  Aaron M Kushner,et al.  Multiphase design of autonomic self-healing thermoplastic elastomers. , 2012, Nature chemistry.

[7]  C. Weder,et al.  Oligo(p-phenylene vinylene) Excimers as Molecular Probes: Deformation-Induced Color Changes in Photoluminescent Polymer Blends , 2002 .

[8]  S. Craig,et al.  Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. , 2005, Angewandte Chemie.

[9]  Jeffrey S. Moore,et al.  Shear activation of mechanophore-crosslinked polymers , 2011 .

[10]  Mitchell T. Ong,et al.  Force-induced activation of covalent bonds in mechanoresponsive polymeric materials , 2009, Nature.

[11]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[12]  Aaron M. Kushner,et al.  Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. , 2007, Journal of the American Chemical Society.

[13]  Jeffrey S. Moore,et al.  Environmental effects on mechanochemical activation of spiropyran in linear PMMA , 2011 .

[14]  H. Gaub,et al.  Analysis of Metallo‐Supramolecular Systems Using Single‐Molecule Force Spectroscopy , 2003 .

[15]  S. Rowan Biomimetic materials: Polymers with bio-inspired strength. , 2009, Nature chemistry.

[16]  J. Winkler,et al.  Photodynamic Fluorescent Metal Ion Sensors with Parts per Billion Sensitivity , 1998 .

[17]  Darren J. Martin,et al.  Structure-property relationships in biomedical thermoplastic polyurethane nanocomposites , 2012 .

[18]  C. Bielawski,et al.  Mechanical activation of catalysts for C-C bond forming and anionic polymerization reactions from a single macromolecular reagent. , 2010, Journal of the American Chemical Society.

[19]  Christoph Leyens,et al.  Self-Healing Materials , 2009 .

[20]  Johnathan N. Brantley,et al.  Unclicking the Click: Mechanically Facilitated 1,3-Dipolar Cycloreversions , 2011, Science.

[21]  J. Lenhardt,et al.  gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. , 2009, Journal of the American Chemical Society.

[22]  Sebastian Seiffert,et al.  Physical chemistry of supramolecular polymer networks. , 2012, Chemical Society reviews.

[23]  Bo Zheng,et al.  Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.

[24]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[25]  Zhibin Guan,et al.  Modular design in natural and biomimetic soft materials. , 2011, Angewandte Chemie.

[26]  Yasuhiro Shiraishi,et al.  Entropy-driven thermal isomerization of spiropyran in viscous media. , 2011, The journal of physical chemistry. A.

[27]  Nancy R. Sottos,et al.  Exploiting Force Sensitive Spiropyrans as Molecular Level Probes , 2013 .

[28]  Aaron M Kushner,et al.  A biomimetic modular polymer with tough and adaptive properties. , 2009, Journal of the American Chemical Society.

[29]  M. Ostermeier,et al.  Multifunctional "clickates" as versatile extended heteroaromatic building blocks: efficient synthesis via click chemistry, conformational preferences, and metal coordination. , 2007, Chemistry.

[30]  Paul V Braun,et al.  Force-induced redistribution of a chemical equilibrium. , 2010, Journal of the American Chemical Society.

[31]  Nancy R. Sottos,et al.  A Self‐Healing Poly(Dimethyl Siloxane) Elastomer , 2007 .

[32]  Jay A. Syrett,et al.  Mechanically facilitated retro [4+2] cycloadditions. , 2011, Journal of the American Chemical Society.

[33]  S. Rowan,et al.  Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. , 2011, Nature materials.

[34]  C. Aakeröy,et al.  The role of metal ions and counterions in the switching behavior of a carboxylic acid functionalized spiropyran. , 2010, Dalton transactions.

[35]  S. Craig,et al.  Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. , 2011, Journal of the American Chemical Society.

[36]  Marek W. Urban,et al.  Self-repairable copolymers that change color , 2012 .

[37]  E. W. Meijer,et al.  Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. , 2012, Nature chemistry.

[38]  D. Tuncaboylu,et al.  Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions , 2011 .

[39]  N. Rossi,et al.  Synthesis and characterisation of pyrene-labelled polydimethylsiloxane networks: towards the in situ detection of strain in silicone elastomers , 2009 .

[40]  S. Craig,et al.  Bicyclo[3.2.0]heptane mechanophores for the non-scissile and photochemically reversible generation of reactive bis-enones. , 2012, Journal of the American Chemical Society.

[41]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[42]  John C Huffman,et al.  Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? , 2007, Chemical communications.

[43]  Florian Herbst,et al.  Macromol. Rapid Commun. 3/2013 , 2013 .

[44]  P. Mather,et al.  Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules , 2001 .

[45]  Yasuhiro Shiraishi,et al.  Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication. , 2010, Physical chemistry chemical physics : PCCP.

[46]  J. P. Phillips,et al.  Photochromic Chelating Agents , 1965 .

[47]  Nancy R. Sottos,et al.  Role of Mechanophore Orientation in Mechanochemical Reactions. , 2012, ACS macro letters.

[48]  S. Weber,et al.  Stabilization of the merocyanine form of photochromic compounds in fluoro alcohols is due to a hydrogen bond , 1998 .

[49]  Mitchell T. Ong,et al.  Trapping a Diradical Transition State by Mechanochemical Polymer Extension , 2010, Science.

[50]  Mary M. Caruso,et al.  Mechanically-induced chemical changes in polymeric materials. , 2009, Chemical reviews.

[51]  Jeffrey S. Moore,et al.  Proton-coupled mechanochemical transduction: a mechanogenerated acid. , 2012, Journal of the American Chemical Society.

[52]  Masaru Yoshida,et al.  High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder , 2010, Nature.

[53]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[54]  N. Sasaki,et al.  Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique. , 1996, Journal of biomechanics.

[55]  Guangning Hong,et al.  Multi-responsive self-healing metallo-supramolecular gels based on “click” ligand , 2012 .

[56]  Jürgen Popp,et al.  Self‐Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers , 2013, Advanced materials.

[57]  Z. Guan,et al.  Modular domain structure: a biomimetic strategy for advanced polymeric materials. , 2004, Journal of the American Chemical Society.

[58]  N. Sasaki,et al.  Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. , 1996, Journal of biomechanics.

[59]  Jonathan Seppala,et al.  A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. , 2010, Journal of the American Chemical Society.

[60]  Aaron M. Kushner,et al.  Self-healing supramolecular block copolymers. , 2012, Angewandte Chemie.

[61]  S. Holder,et al.  Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials , 2011 .

[62]  Z. Guan,et al.  Synthesis and single-molecule studies of a well-defined biomimetic modular multidomain polymer using a peptidomimetic beta-sheet module. , 2004, Journal of the American Chemical Society.

[63]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[64]  Feihe Huang,et al.  Self-healing supramolecular gels formed by crown ether based host-guest interactions. , 2012, Angewandte Chemie.

[65]  J. Lenhardt,et al.  A backbone lever-arm effect enhances polymer mechanochemistry. , 2013, Nature chemistry.

[66]  Huan Zhang,et al.  Mechanoresponsive PS-PnBA-PS Triblock Copolymers via Covalently Embedding Mechanophore. , 2013, ACS macro letters.

[67]  Rong-Hua Yang,et al.  Tunable photochromism of spirobenzopyran via selective metal ion coordination: an efficient visual and ratioing fluorescent probe for divalent copper ion. , 2008, Analytical chemistry.