Dependence of catalytic properties of Al/Fe 2 O 3 thermites on morphology of Fe 2 O 3 particles in combustion reactions

[1]  Xiaoping Zhou,et al.  Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. , 2014, ACS applied materials & interfaces.

[2]  S. Nair,et al.  Thin Film Carbon-sulfur Cathodes by Electrophoretic Deposition for a Prototype Lithium Sulfur Battery System , 2013 .

[3]  Xiaoping Zhou,et al.  Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability. , 2013, ACS applied materials & interfaces.

[4]  Abdullah M. Asiri,et al.  Highly sensitive and stable phenyl hydrazine chemical sensors based on CuO flower shapes and hollow spheres , 2013 .

[5]  Hua Li,et al.  Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. , 2013, Journal of materials chemistry. B.

[6]  M. Zachariah,et al.  Electrospun nanofiber-based thermite textiles and their reactive properties. , 2012, ACS applied materials & interfaces.

[7]  A. Gash,et al.  Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites , 2012 .

[8]  Kaili Zhang,et al.  Integration of nano-Al with Co3O4 nanorods to realize high-exothermic core–shell nanoenergetic materials on a silicon substrate , 2012 .

[9]  M. Aghaie-Khafri,et al.  A novel method to synthesize Cr2O3 nanopowders using EDTA as a chelating agent , 2012 .

[10]  E. Dreizin,et al.  Low-temperature exothermic reactions in fully dense Al–CuO nanocomposite powders , 2012 .

[11]  Xun Wang,et al.  Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. , 2011, Inorganic chemistry.

[12]  Karen S. Martirosyan,et al.  Nanoenergetic Gas-Generators: principles and applications , 2011 .

[13]  S. Musić,et al.  Hydrothermal synthesis of α-Fe2O3 nanorings with the help of divalent metal cations, Mn2+, Cu2+, Zn2+ and Ni2+ , 2011 .

[14]  N. Thadhani,et al.  Kinetic study of thermal- and impact-initiated reactions in Al–Fe2O3 nanothermite , 2010 .

[15]  Y. Chabal,et al.  Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro , 2010 .

[16]  M. Zachariah,et al.  Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release , 2010 .

[17]  Matthew A. Stephens,et al.  Multi‐Parameter Study of Nanoscale TiO2 and CeO2 Additives in Composite AP/HTPB Solid Propellants , 2010 .

[18]  H. Hng,et al.  Synthesis and characterization of self-assembled nanoenergetic Al–Fe2O3 thermite system , 2010 .

[19]  A. Stiegman,et al.  The Effects of Stoichiometry and Sample Density on Combustion Dynamics and Initiation Energy of Al/Fe2O3 Metastable Interstitial Composites , 2010 .

[20]  D. Luss,et al.  Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use , 2009, Nanotechnology.

[21]  A. Stiegman,et al.  Dynamics of Al/Fe2O3 MIC Combustion from Short Single-Pulse Photothermal Initiation and Time-Resolved Spectroscopy , 2009 .

[22]  K. V. Anand,et al.  Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion , 2009 .

[23]  M. Zachariah,et al.  Enhanced reactivity of nano-B/Al/CuO MIC's , 2009 .

[24]  A. Khanna,et al.  Effect of nano-Fe2O3 particles on the corrosion behavior of alkyd based waterborne coatings , 2009 .

[25]  Yi Zhang,et al.  A novel method to prepare Cr2O3 nanoparticles , 2008 .

[26]  Wei Jiang,et al.  Thermite reactions of Al/Cu core-shell nanocomposites with WO3 , 2007 .

[27]  Carole Rossi,et al.  Development of a nano-Al∕CuO based energetic material on silicon substrate , 2007 .

[28]  L. T. De Luca,et al.  Nano-aluminum as energetic material for rocket propellants , 2007 .

[29]  S. Son,et al.  Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3) , 2007 .

[30]  S. Apte,et al.  Synthesis of Nanosize‐Necked Structure α‐ and γ‐Fe2O3 and its Photocatalytic Activity , 2007 .

[31]  E. Dreizin,et al.  Arrested Reactive Milling Synthesis and Characterization of Sodium‐Nitrate Based Reactive Composites , 2007 .

[32]  V. N. Krishnamurthy,et al.  Differential Scanning Calorimetric Study of HTPB based Composite Propellants in Presence of Nano Ferric Oxide , 2006 .

[33]  E. Dreizin,et al.  Control of Structural Refinement and Composition in Al‐MoO3 Nanocomposites Prepared by Arrested Reactive Milling , 2006 .

[34]  C. Xie,et al.  Influence of humidity on the thermal behavior of aluminum nanopowders , 2006 .

[35]  K. Sun,et al.  Kinetics of thermite reaction in Al-Fe2O3 system , 2006 .

[36]  M. Pantoya,et al.  Effect of nanocomposite synthesis on the combustion performance of a ternary thermite. , 2005, The journal of physical chemistry. B.

[37]  Blaine W. Asay,et al.  Combustion velocities and propagation mechanisms of metastable interstitial composites , 2005 .

[38]  A. Gash,et al.  Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique , 2005 .

[39]  M. Pantoya,et al.  Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites , 2005 .

[40]  E. Dreizin,et al.  Fully dense nano-composite energetic powders prepared by arrested reactive milling , 2005 .

[41]  M. Pantoya,et al.  The role of the Al2O3 passivation shell surrounding nano-Al particles in the combustion synthesis of NiAl , 2004 .

[42]  Wei-min Liu,et al.  Microstructure and properties of Fe3Al–Fe3AlC0.5 composites prepared by self-propagating high temperature synthesis casting , 2004 .

[43]  Jae-pyoung Ahn,et al.  Sol–Gel Mediated Synthesis of Fe2O3 Nanorods , 2003 .

[44]  R. Armstrong,et al.  Enhanced Propellant Combustion with Nanoparticles , 2003 .

[45]  R. Simpson,et al.  Nanostructured energetic materials using sol-gel methodologies , 2001 .

[46]  Z. A. Munir,et al.  Thermite reactions: their utilization in the synthesis and processing of materials , 1993, Journal of Materials Science.

[47]  H. S. Maiti,et al.  Phase analysis in the Fe2O3NiO mixed oxides prepared by co-precipitation , 1984 .