Occlusion robust adaptive template tracking

We propose a new method for tracking rigid objects in image sequences using template matching. A Kalman filter is used to make the template adapt to changes in object orientation or illumination. This approach is novel since the Kalman filter has been used in tracking mainly for smoothing the object trajectory. The performance of the Kalman filter is further improved by employing a robust and adaptive filtering algorithm. Special attention is paid to occlusion handling.

[1]  Hai Tao,et al.  Dynamic layer representation with applications to tracking , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[3]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Tzay Y. Young,et al.  A Mathematical Model for Computer Image Tracking , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Tomás Cipra,et al.  Robust Kalman filter and its application in time series analysis , 1991, Kybernetika.

[6]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[8]  Rama Chellappa,et al.  Simultaneous tracking and verification via sequential posterior estimation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).